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Abstract

The most fundamental proposition about growth and competition is that there is a tradeoff between

static welfare and long-term growth. This paper reconsiders this basic proposition in an increasing

product variety endogenous growth model with competitive markets for “old” innovative products

and for a traditional good. We shed light on some implications of monopolistic distortions which

tend to be ignored by standard models. First, no growth may be better than some growth, since

modest positive growth potentially requires sizeable static welfare losses. Second, the economy may

converge to a steady state with zero growth, even though another (saddle-point stable) steady state

with positive growth exists if the initial share of “cheap” competitive markets is sufficiently high,

as this implies a relatively low demand for “expensive” innovative goods. Third, such a “no-growth

trap” may happen in a world economy made up of several countries engaged in free trade with

each other. The policy implications are that growth-enhancing policies may be misguided and that

quick deregulation as well as quick trade liberalization can lead to stagnation in the long term.
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1 Introduction

The most fundamental proposition about growth and competition, taught in introductory economics

courses, is that there is a tradeoff between static welfare and long-term growth: perfect competition

brings about static efficiency but undermines the incentives to invest in the innovation of new goods,

services, and processes (see, e.g., Blanchard, 2006, p. 256).1 This paper highlights several important

macroeconomic implications of this basic proposition. To do so, we consider the standard Grossman-

Helpman (1991, Ch. 3) increasing variety endogenous growth model augmented to include erosion

of monopoly power due to (exogenous) imitation and a non-innovative traditional sector. Neither of

these two extensions is novel. Textbook expositions can be found, for instance, in Barro and Sala-i-

Martin (2004, Section 6.2, pp. 305 ff.) and Grossman and Helpman (1991, Section 5.3, pp. 130 ff.),

respectively.2 However, the implications of the resulting monopolistic distortions for model dynamics

and welfare are not fully worked out. We prove three results on the model’s dynamics and welfare

properties and derive corollaries which characterize second-best competition policies.

The first result is directly concerned with the tradeoff between static welfare and the incentives to

innovate. In the Grossman-Helpman (1991, Ch. 3) model (i.e., without competitive markets), the

equilibrium growth rate is lower than optimal, and no growth cannot be better than some growth. We

show that, in our model, it can be. This is because there is a static welfare loss (of non-infinitesimal size)

due to monopoly pricing in the innovative sector. If the incentives provided by monopoly profits bring

about only a modest growth rate, it is preferable to dispense with growth altogether and implement

static efficiency instead. The implication for economic policy is that so as to achieve a modest growth

rate, it may not be worthwhile incurring the associated cost in terms of static welfare losses. This

finding has not been emphasized in models of growth with competitive markets.

The second result says that the economy may get stuck in a “no-growth trap” (poverty trap): the

unique perfect-foresight equilibrium possibly entails convergence to a steady state with zero growth,

even though another (locally) saddle-point stable steady state with positive growth exists. This will

happen if the initial share of competitive markets is sufficiently high.3 In that case, a potential innovator

1Hellwig and Irmen (2001) point out that perfect competition per se does not rule out innovation-driven growth:

positive profit and costly innovation are compatible with perfect competition in the presence of diminishing returns to

scale and inframarginal rents (see also the discussion in Romer, 1990, pp. S75-S77).

2For models with exogenous imitation, see also Rustichini and Schmitz (1991), Kwan and Lai (2003), and Pelka (2005,

Chapter 7). In Segerstrom (1991) and Walz (1995), imitation is endogenous. Perez-Sebastian (2000) shows that “growth

miracles” can be explained in a model that interprets the process of imitation as the costly adaption of knowledge created

abroad.

3The possibility of a no-growth trap is ignored in the papers with exogenous imitation mentioned in footnote 2 except
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would compete with many relatively cheap products, so that it does not pay to innovate. This result

is related to the literature on poverty traps, surveyed by Azariadis and Stachurski (2005). As for

economic policy, it implies that quick deregulation, which turns many monopolistic markets (e.g.,

state monopolies) into perfectly competitive markets simultaneously may be very detrimental to long-

term growth, since innovating becomes unattractive as the incumbent competitive producers attract

the major part of the goods demand.

The second result is reminiscent of Tang and Wälde’s (2001) finding that a two-country world economy

may find itself in a no-growth trap if there are sufficiently many competitive markets due to a large

initial overlap of products, invented before trade is opened up between the countries. Our third result

is concerned with the open-economy version of our model and relates our model to Tang and Wälde’s

(2001). Adapting the analysis in Arnold (2007) appropriately, we prove that, under certain conditions,

the world economy made up of several (identical) countries replicates the equilibrium of the hypotheti-

cal integrated economy (that would prevail if national borders did not exist). Together with the second

result, it follows immediately that if the model parameters are such that the no-growth trap occurs in

the integrated economy, then the no-growth trap is also an equilibrium of the world economy if there

are sufficiently many competitive markets due to a large initial overlap of products. From a policy

point of view, it follows that, like quick deregulation in a closed economy, quick trade liberalization

can lead to stagnation in the long term: the opening up of free trade at a point in time when the

overlap exceeds the threshold number of competitive markets, above which the (world) economy is

stuck in a no-growth trap, leads to long-term stagnation.

In relating our model to the existing literature, several cautionary notes are in order. First, a huge and

growing literature addresses the issue of competition between several firms in given markets and the

relation between the intensity of competition and the pace of equilibrium growth. For instance, Aghion

et al. (2001) demonstrate that more intense competition may spur growth in a model with innovation

by both technological leaders and laggards, as it induces firms to try to escape fierce competition. Such

effects are not present in our model, in which markets are either monopolies or perfectly competitive.

Our motivation is that this is the easiest way of approaching the question of how distortions which

stem from the fact that some markets are less competitive than others affect model dynamics.

Second, in their influential “Case Against Intellectual Property”, Boldrin and Levine argue that “the

case against monopoly rests less upon the welfare triangle from monopoly pricing than upon the

rent-seeking activity used to get and keep a monopoly” (Boldrin and Levine, 2002, p. 211). This de-

in Pelka (2005, Chapter 7). The part of the present paper concerned with the possibility of a no-growth trap clarifies

and extends Pelka’s (2005, Chapter 7) analysis.
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emphasis of monopoly distortions is at least debatable. At any rate, the two effects are complementary,

and including the rent seeking problems emphasized by Boldrin and Levine would strengthen our

conclusions.

Third, the terms deregulation and liberalization can be given different meanings. We call a change

from monopoly to perfect competition deregulation (since our model is an increasing variety model,

the market then remains competitive indefinitely). As an example of a different definition, see Büttner

(2006). She considers a quality upgrading model in which some goods are publicly provided (without

being upgraded) at monopoly prices and defines deregulation as a decrease in the number of such

monopolies. Deregulation is then unambiguously conducive to growth. In the open economy version

of our model, liberalization means a switch from no international trade at all to unrestricted free

trade. A more general formulation would allow for finite iceberg costs and define trade liberalization

as a decrease in the iceberg costs (see, e.g., Baldwin and Robert-Nicoud, 2007, or Gustafsson and

Segerstrom, 2007) or introduce tariffs explicitly (as, e.g., in Dinopoulos and Segerstrom, 1999, or

Baldwin and Forslid, 1999, 2000).

Fourth, it is well known that in models with quality upgrading as the source of growth, contrary to

increasing variety models, growth can be too fast and zero growth can be preferable when equilibrium

growth is positive (see, e.g., Grossman and Helpman, 1991, Ch. 4, pp. 103-106). To highlight that it

is the monopolistic distortions which are responsible for our first result, we choose as our point of

departure an expanding variety growth model, so that growth cannot be too fast in the absence of

competitive markets.

Fifth, the Grossman-Helpman (1991, Ch. 3) model is a first-generation R&D model, which displays

scale effects. Time series observations pose a great challenge to such models (see Jones, 1995a) and have

led to the development of non-scale growth models, such as Jones (1995b), Young (1998), or Arnold

(1998).4 A relatively general lesson of these models is that growth rates are much less responsive to

changes in the model parameters than models with scale effects indicate.5 Our motivation for using

a first-generation model is that this limits the number of state variables in such a way that we can

carry out the (phase diagram) analysis of the model’s global dynamic behavior which is necessary in

order to identify a no-growth trap. This appears acceptable in view of the fact that the presence of a

no-growth trap is a property of the model’s qualitative dynamic behavior, which should not relate to

4Young (1998) emphasizes that an increase in the labor force may be absorbed by a sector of the economy that does

not spur long-term growth. Jones (1995b) assumes diminishing returns to knowledge in the creation of new knowledge,

in which case population growth is required to sustain long-term growth. Arnold (1998) replaces population growth with

human capital accumulation.

5See, however, Howitt (1999).
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the responsiveness of the steady-state growth rate to changes in model parameters.

The remainder of the paper is organized as follows. Section 2 introduces the model. The growth

equilibrium is derived in Section 3. Section 4 proves our main results on growth and competition.

Section 5 concludes.

2 Model

There is a continuum of mass one of identical households. Each household inelastically supplies L units

of labor, the only primary factor of production. Their intertemporal utility is U =
∫∞
0 e−ρt[σ lnX +

(1 − σ) lnY ]dt, where X and Y are the quantities consumed of two homogeneous goods, x and y

(and ρ > 0, 0 < σ < 1).6 Good x is produced using a set of intermediates, j, according to the

production function X = [
∫ n
0 x(j)

αdj]1/α, where x(j) is the input of intermediate j, n is the “number”

of producible intermediates, and 0 < α < 1. Each producible intermediate, j, is obtained one-to-one

from labor. The “traditional” good y is also obtained one-to-one from labor: Y = LY , where LY is

labor employed in the production of y (one may think of services with less scope for innovation than

in manufacturing). Blueprints for new intermediates are invented in R&D according to ṅ = nLR/a

(with a > 0), where LR is employment in R&D (there are scale effects). As for market structure,

we assume that all markets are perfectly competitive except for the markets for “new” intermediates.

Immediately after the development of a new variety, the innovator is a monopolist (due to either patent

protection or the fact that other agents are not yet able technologically to imitate the intermediate).

Subsequently, in any short time interval dt the innovator loses his monopoly with probability ψ dt

(due to the loss of patent protection or of technological leadership), in which case the market becomes

perfectly competitive. ψ (≥ 0) is called the rate of imitation. Consequently, letting nm and nc denote

the “numbers” of monopolistic and competitive markets for intermediate goods, respectively, we have

ṅc = ψnm, n = nc + nm. (1)

As mentioned in the Introduction, the presence of competitive markets (for “old” innovative goods

and for the traditional good) is the only difference to Grossman and Helpman (1991, Ch. 3). Our main

results, explained in the Introduction, go through for ψ = 0. The purpose of including ψ > 0, at the

cost of some additional complexity, is two-fold. First, with ψ = 0, obviously, the number of competitive

innovative goods markets converges to zero, which runs counter our focus on the role of competitive

versus monopolistic markets. Second, by allowing for positive values, we can use ψ as a measure of

6The time argument is suppressed here and in what follows whenever this does not cause confusion.
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the strength of intellectual property rights, which will be convenient in the policy experiments we

consider.

3 Equilibrium

Using aggregate expenditure as the numéraire, utility maximization yields

pXX = σ, pY Y = 1− σ, r = ρ, (2)

where pX and pY are the prices of goods x and y, respectively, and r is the interest rate. Cost

minimization in the x-sector yields the input coefficient a(j) = p(j)−ε[
∫ n
0 p(j

′)1−εdj′]ε/(1−ε) for good

j, where p(j) is the price of intermediate j and ε ≡ 1/(1−α). Consequently, the unit production cost

and, because of perfect competition, the price of good x is pX = [
∫ n
0 p(j)

1−εdj]1/(1−ε). The x-sector’s

demand for intermediate j is x(j) = a(j)X. The price elasticity of demand is ε (< ∞). Monopolists

in the intermediate goods sector maximize profit, π, given these demand functions. Letting pm and pc

denote the prices in monopolistic and competitive intermediate goods markets, respectively, and xm

the output of monopolistically supplied intermediates, we obtain the familiar pricing rules and ensuing

profits:

pm =
w

α
, pc = w, π = (1− α)pmxm. (3)

Substituting the pricing rules into the expression for the input coefficients, a(j), the demands x(j) =

a(j)X can be rewritten as

xm = αε
(
nc + αε−1nm

)− 1
α X, xc =

(
nc + αε−1nm

)− 1
α X, (4)

where xc denotes the output of competitively supplied intermediates. Moreover, substituting the pric-

ing rules in (3) into pX = [
∫ n
0 p(j)

1−εdj]1/(1−ε) and using the fact that good y is obtained one-to-one

from labor, we get the final goods’ prices:

pX =
(
nc + αε−1nm

)− 1
ε−1 w, pY = w. (5)

Using the fact that, as of time t, a monopolist’s probability of still being a monopolist at τ (≥ t) is

e−ψ(τ−t), the value of a monopoly is

v(t) ≡
∫ ∞

t
exp

{
−

∫ τ

t
[r(s) + ψ]ds

}
π(τ)dτ. (6)

Imitation acts like additional discounting. Free entry into R&D requires

wa ≥ nv, with equality if ṅ > 0. (7)
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Finally, the labor market clearing condition reads:

L = a
ṅ

n
+ ncxc + nmxm + Y. (8)

Equations (1)-(8) comprise a system of 15 equations in 15 unknowns: nc, nm, n, pX , X, pY , Y , r, pm,

w, pc, π, xm, xc, and v.7 A vector of these 15 variables which solves (1)-(8) for all t is an equilibrium.

Let θ ≡ nc/n and g = ṅ/n denote the proportion of intermediate goods markets which are competitive

and the growth rate of the “number” of intermediates, respectively. Further, let V ≡ 1/(nv). Using

Y = LY , (2), (4), (5), (7), and these definitions, the labor market clearing condition (8) can be

rewritten as

g = max
{

0,
L

a
− σV

[
θ(1− αε) + αε

θ(1− αε−1) + αε−1
+

1− σ
σ

]}
. (9)

Differentiating the definition of θ and using (1) yields

θ̇ = (1− θ)ψ − θg. (10)

Imitation tends to increase the proportion of competitive markets, growth tends to reduce it. From

(2)-(5), we have

π =
σ(1− α)

[1− θ(1− α1−ε)]n
.

Differentiating the definition of V and (6) with respect to time, eliminating v̇, and using (2) and the

equation for monopoly profit above, we obtain

V̇

V
=

(1− α)σ
1− θ(1− α1−ε)

V − (ρ+ ψ + g). (11)

Given (9), equations (10) and (11) comprise an autonomous system of ordinary differential equations

in θ and V . In the present section, we analyze this system of equations. The findings will be used in

Section 4 to bring forth our main results. As mentioned above, it is possible to focus on the (easier)

case ψ = 0.

From (9), g > 0 if, and only if,

V <
L

a

1− θ(1− α1−ε)
1− θ[1− α1−ε − (1− α)σ]− (1− α)σ

≡ Ṽ (θ) (12)

and g = 0 otherwise. Ṽ (θ) is continuous and strictly decreasing for θ ∈ [0, 1], with Ṽ (0) = (L/a)/[1−

(1− α)σ] and Ṽ (1) = L/a.

7The budget constraint d(nmv)/dt = rnmv +wL− 1 represents another equation in the same variables, but as usual

in general equilibrium theory, one of the 16 equations can be obtained from the other 15, so that we have as many

equations as unknowns.
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Figure 1: Dynamics in case 1 (left panel: ψ > 0, right panel: ψ = 0)

Consider first the g = 0-region. According to (11), V is constant for V = 0 and for

V = (ρ+ ψ)
1− θ(1− α1−ε)

(1− α)σ
≡ V̄0(θ), (13)

where V̄0(0) = (ρ + ψ)/[(1 − α)σ], V̄0(1) = (ρ + ψ)/[(1 − α)αε−1σ], and V̄ ′
0(θ) > 0. V̇ is positive for

V > V̄0(θ) and negative for V < V̄0(θ). For ψ > 0, from (10) and g = 0, θ is constant or increases

depending on whether θ = 1 or θ < 1, respectively. ψ = 0, together with g = 0, implies θ̇ = 0.

Here and in what follows, we distinguish three cases:

Case 1:
(1− α)σLa
ρ+ ψ

> α1−ε. (14)

In this case, V̄0(1) < Ṽ (1). As V̄ ′
0(θ) > 0 > Ṽ ′(θ) for all θ ∈ [0, 1], it follows that V̄0(θ) < Ṽ (θ) and,

hence, V̇ /V > 0 for all θ ∈ [0, 1]. That is, trajectories in the g = 0-region point to the north-east for

ψ > 0 (see the left panel of Figure 1) and to the north for ψ = 0 (see the right panel of Figure 1).

Case 2:
(1− α)σLa
ρ+ ψ

< 1− (1− α)σ. (15)

Here, V̄0(0) > Ṽ (0), so that the curve V̄0(θ) is located above the curve Ṽ (θ). V rises above and falls

below V̄0(θ). Suppose ψ > 0. Then, the point (θ, V ) = (1, V̄0(1)) is a steady state. As can be seen from

the left panel of Figure 2, for each θ ∈ [0, 1], there exists a unique path converging to this steady state.

For ψ = 0, we have (θ̇, V̇ ) = (0, 0) for all (θ, V̄0(θ)). Hence, for any initial proportion of competitive

markets, θ(0), there is a steady state (θ, V ) = (θ(0), V̄0(θ(0))) (see the right panel of Figure 2).

Case 3:

1− (1− α)σ ≤
(1− α)σLa
ρ+ ψ

≤ α1−ε. (16)
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Figure 2: Dynamics in case 2 (left panel: ψ > 0, right panel: ψ = 0)

In this, intermediate, case the curves V̄0(θ) and Ṽ (θ) intersect for some θ ∈ [0, 1].8 As in case 2, V

rises above V̄0(θ) and falls below the curve (see Figure 3).

Next, consider the region with positive growth (i.e., g > 0). From (9) and (11), V is constant if V = 0

or if

V =
(
ρ+ ψ +

L

a

)
1− θ(1− α1−ε)

1− θ[1− α1−ε − (1− α)σ]
≡ V̄ (θ). (17)

V̄ (0) = ρ+ψ+L/a, V̄ (1) = (ρ+ψ+L/a)/[1 + (1−α)αε−1σ], and V̄ ′(θ) < 0 for all θ ∈ [0, 1]. V rises

above the stationary locus and falls below. From (10), θ̇ = 0 for

V =
(
L

a
− 1− θ

θ
ψ

)
1− θ(1− α1−ε)

1− θ [1− α1−ε − (1− α)σ]− (1− α)σ
≡ Vθ(θ). (18)

Using (12), we can rewrite Vθ(θ) as

Vθ(θ) = Ṽ (θ)− 1− θ
θ

ψ
1− θ(1− α1−ε)

1− θ [1− α1−ε − (1− α)σ]− (1− α)σ
. (19)

For ψ > 0, from (18) and (19), we have Vθ(θ) = 0 for (0 <) θ = ψ/(ψ + L/a) (< 1) and for

θ = 1/(1 − α1−ε) (< 0). Moreover, Vθ(θ) → −∞ as θ → 0 from above, Vθ is continuous on θ ∈ (0, 1],

V ′
θ(1) = ψ − (L/a)αε−1(1 − α)σ, and Vθ(θ) < Ṽ (θ) for all θ ∈ (0, 1). For ψ = 0, on the other hand,

Vθ(θ) = Ṽ (θ) for all θ and Vθ(1) = Ṽ (1) = L/a.

Case 1: Suppose ψ > 0. Then, the case distinction (14) implies V̄ (θ) < Ṽ (θ) for all θ ∈ [0, 1] (since

V̄ (0) < Ṽ (0) and V̄ (θ) = Ṽ (θ) for some θ ∈ (0, 1] contradicts the case distinction). Moreover, Vθ(θ) <

Ṽ (θ) for all θ ∈ (0, 1), and Vθ(1) = Ṽ (1) (i.e., Vθ(1) > V̄ (1)). It follows that the stationary loci V̄ (θ)

8Notice that the terminology is somewhat loose with regard to a common point at one of the boundaries, θ = 0 or

θ = 1 (i.e., when one equality in (16) is strict).
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Figure 3: Dynamics in case 3 (upper panels: ψ > 0, lower panel: ψ = 0)
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and Vθ(θ) intersect an odd number of times on (0, 1). The fact that V ′
θ(1) < 0 implies that Vθ(θ)

has an interior local maximum on (0, 1]. From (17) and (18), V̄ (θ) = Vθ(θ) for θ = 1/(1 − α1−ε)

(< 0) and for those θ’s which satisfy the equality V̄ (θ)/[1 − θ(1 − α1−ε)] = Vθ(θ)/[1 − θ(1 − α1−ε)].

This is a quadratic equation, with an even number of real-valued solutions. It follows that V̄ (θ) and

Vθ(θ) intersect exactly once in the interval [0, 1], which proves that a unique steady state exists in the

g > 0-region. As can be seen from the left panel of Figure 1, the steady state is a saddle point. For

ψ = 0, we have θ̇/θ = −g < 0. (θ, V ) = (0, V̄ (0)) is the unique steady state in the g > 0-region and

is a saddle point (see the right panel of Figure 1). For each θ ∈ [0, 1], there exists a unique trajectory

converging to the steady state both for ψ > 0 and for ψ = 0. Divergent paths can be ruled out

adapting the arguments put forward by Grossman and Helpman (1991, p. 61): paths starting above

the saddle path yield V → ∞ and θ → θ′ > 0, where θ′ = 1 if ψ > 0 (see Figure 1). However, once

the economy is in the g = 0-region, πn = σ(1 − α)/[1 − θ(1 − α1−ε)] ≥ σ(1 − α)αε−1 and, from (6),

vn ≥ σ(1− α)αε−1/(ρ+ ψ). This contradicts V →∞. Paths starting below the saddle path converge

to (θ, V ) = (ψ/(ψ+L/a), 0) (see Figure 1). As π ≤ σ(1−α)/n, we have nv ≤ σ(1−α)/(ρ+ψ), which

contradicts V → 0.

Case 2: In the g = 0-region, V̇ /V < 0 below the curve V̄0(θ). A fortiori, from (11), V̇ /V < 0 in

the g > 0-region. As in case 1, if ψ > 0, the θ̇ = 0-locus diverges to −∞ as θ → 0 from above

and satisfies Vθ(1) = Ṽ (θ). As can be seen from the left panel in Figure 2, all paths except the one

converging to (θ, V ) = (1, V̄0(1)) violate perfect foresight analogously to the divergent paths in case

1. For ψ = 0, given a starting value θ(0), the only trajectory consistent with perfect foresight entails

that the economy jumps to the steady state (θ(0), V0(θ(0))).

Case 3: In this intermediate case, the curves V̄0(θ) and Ṽ (θ) intersect for some θ ∈ [0, 1]. From (11),

the stationary locus for V is continuous on the border between positive and zero growth, Ṽ (θ). When

the first inequality in (16) is strict, we have V̄ (0) = Ṽ (0). For ψ > 0, by the arguments put forward

in case 2, the number of intersections of V̄ (θ) and Vθ(θ) in the g > 0-region is two (see the upper

left panel of Figure 3) or zero (see the upper right panel of Figure 3).9 In the former subcase (two

intersections), let θc denote the abscissa value of the south-eastern intersection. Then, for each θ < θc,

the unique trajectory consistent with perfect foresight converges to the north-western steady state, and

for each θ > θc, the unique trajectory consistent with perfect foresight converges to (θ, V ) = (1, V̄0(1)).

Similarly, in case of ψ = 0, let θc denote the θ-value at which the V̇ = 0-locus intersects the g = 0-

boundary, Ṽ (θ). For θ(0) < θc, the economy converges to (0, V̄ (0)). By contrast, for θ(0) > θc, the

9The dynamics are similar in all respects important for our purposes if Vθ(θ) is montonically increasing, rather than

taking on a maximum on θ ∈ (0, 1].
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economy jumps to (θ(0), V̄θ(θ(0))) (see the lower panel of Figure 3).

4 Results

In this section, we use our findings about the model dynamics to prove three propositions about growth

and welfare and derive corollaries addressing the issue of second-best competition policies mentioned

in the Introduction.

The first result states that no growth may be better than some growth. To illustrate this, suppose it

is possible to effectively protect monopolies indefinitely, so that ψ = 0. Suppose L is sufficiently large

so that (14) or (16) holds for ψ = 0, i.e., case 1 or case 3 applies, and there is a steady state with

positive growth. We know from Section 3 that if θ(0) = 0, the economy settles down at a steady state

with θ(t) = 0 for all t (see the right panel of Figure 1 and the lower panel of Figure 3, respectively).

From (9) and (11) with θ̇ = 0, it follows that

g = (1− α)σ
L

a
− [1− (1− α)σ]ρ. (20)

Let L+ denote the value for L such that g = 0 for L ≤ L+ and g > 0 for L > L+ (L = L+ implies

that the first weak inequality in (16) holds with equality):

L+ ≡ aρ

[
1

(1− α)σ
− 1

]
.

PROPOSITION 1 (“benefits of no growth”): Suppose (14) or (16) holds for ψ = 0 (i.e., L ≥ L+).

Then, there exists Lc (> L+) such that for L ∈ (L+, Lc), intertemporal utility with competitive prices,

full employment, θ(t) = 1, and g(t) = 0 for all t ≥ 0 is higher than in the equilibrium with θ(t) = 0

and g(t) > 0 given by (20) for all t ≥ 0.10

Proof: Let θ and g be constant. Furthermore, assume prices are set competitively in the y-sector and in

nc intermediate goods markets, while monopoly prices are charged in nm intermediate goods markets.

Then intertemporal utility, U , is

ρU − 1− α
α

σ lnn(0) =
σ

α
ln

[
(ncxc)αθ1−α + (nmxm)α(1− θ)1−α

]
+ (1− σ) lnY +

1− α
α

σ

ρ
g. (21)

The important point to notice is that monopoly pricing in the intermediate goods sector causes the

usual static welfare loss. To see this, notice that an allocation of labor across the intermediates and

good y that maximizes static welfare requires symmetry across the intermediates (i.e., x(j) = x for all

10In Grossman and Helpman’s (1991, Ch. 4) quality upgrading model, equilibrium growth is positive although zero

growth would be preferable if ρa/L lies in the interval (log λ, λ− 1), where λ (> 1) is the size of a quality jump.
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Figure 4: Comparing growth and no-growth equilibria

j ∈ [0, n]) and nx/Y = σ/(1 − σ). For θ(t) = 1, as nc(t) = n(t), the symmetry condition is satisfied.

And from zero profit in x- and y-production (i.e., ncxc = σ/w and Y = (1− σ)/w, respectively), the

allocation of labor is efficient. Next, consider the allocation with θ(t) = 0 and g(t) > 0. Equations

(2)-(5) and θ = 0 imply nx/Y = ασ/(1 − σ). That is, markup pricing leads to too low a level of

x-production relative to y.

Let U0 denote the intertemporal utility level with θ(t) = g(t) = 0 and U+ the utility level obtained in

the steady-state equilibrium with θ(t) = 1 and g(t) > 0 given by (20). Let L→ L+ from above. By the

definition of L+, the growth rate, g, converges to zero. Given that this implies that the combined labor

input in x- and y-production converges to L, the static welfare loss is of non-infinitesimal magnitude.

Consequently, U0 > U+ as L→ L+ from above.11 The right-hand side of (21) is concave in ncxc and in

nmxm but linear in g (which is itself linear in L, see (20)). So there is an Lc > L+ such that U+ ≥ U0

for L ≥ Lc (see Figure 4). Q.E.D.

A direct corollary of Proposition 1 is that no patent protection may be preferable to very strict patent

protection. Suppose by giving up patent protection, the policymaker can raise the imitation rate from

ψ = 0 to ψ = ψ̄ (> 0). Consider the extreme case in which imitators learn instantaneously how to

copy new innovations, so that ψ̄ →∞.

COROLLARY 1 (“benefits of preventing growth”): For L slightly greater than Lc, θ(0) = 0, and

11It is possible (albeit not necessary) to calculate the difference in welfare levels explicitly. Simple manipulations show

that ρU0 − [(1− α)/α]σ lnn(0) = lnL+ σ lnσ + (1− σ) ln(1− σ) and ρU+ − [(1− α)/α]σ lnn(0) = lnL+ σ lnσ + (1−

σ) ln(1 − σ) + σ lnα − ln[1 − (1 − α)σ] as g goes to zero. So ρ(U0 − U+) = ln[1 − (1 − α)σ] − σ lnα as g goes to zero.

That U0 − U+ is strictly positive follows from the fact that it equals zero for σ = 0 and σ = 1 and is strictly concave.

The fact that U0 − U+ = 0 for σ = 1 highlights that the presence of a traditional sector is essential for our argument.

Monopolistic price setting per se does not cause a static distortion; distortions obtain when different goods have different

markups (see Grossman and Helpman, 1991, p. 70).
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ψ̄ →∞, intertemporal utility is higher with ψ = ψ̄ than with ψ = 0.

Proof: As explained above, with ψ = 0, the economy settles down at a steady state with positive

growth, θ = 0, and, hence, with intertemporal utility U+ (the first inequality in (16) is strict). As ψ

rises sufficiently far, (15) becomes valid and case 2 applies. As illustrated by the left panel of Figure

2, zero growth prevails, and the economy converges towards (1, V̄0(1)). For ψ̄ → ∞, the convergence

process becomes infinitely short, so that θ quickly goes to unity and intertemporal utility is close to

U0. Since, by Proposition 1, U0 > U+ for L slightly greater than Lc, giving up patent protection raises

welfare. Q.E.D.

Numerical results, admittedly, suggest that some growth is better than no growth. However, it is

possible to construct counterexamples with parameter values that should not be deemed unrealistic

a priori. For instance, let ρ = 0.04, α = 5/8 (which gives rise to the standard 60% markup), a = 1,

and n(0) = 1. We let σ = 0.999 or σ = 0.5 and choose L such that without imitation (i.e., if ψ = 0)

g = 0.5%, which implies 0.3% growth in the x-sector’s real output (i.e., L = 0.0801 or L = 0.2,

respectively). For σ = 0.999, we get U0 = −63.3097 < −63.0515 = U+. For σ = 0.5, on the other

hand, U0 = −57.5646 > −57.9446 = U+. So the economy with σ = 0.5 (but not the economy with

σ close to unity) would be willing to give up long-term manufacturing output growth of 0.3% in

exchange for static efficiency. That is, raising the imitation rate from zero to infinity is beneficial to

this economy’s representative consumer.

Our second proposition states that the economy may get stuck in a “no-growth” trap (even though

there exists a steady state with positive growth) due to too much competition initially.

PROPOSITION 2 (“no-growth trap”): Suppose (16) holds (case 3). Suppose further that either ψ > 0

and V̄ (θ) and Vθ(θ) intersect twice in the g > 0-region, or else ψ = 0. Then, g(t) > 0 for all t ≥ 0 if

θ(0) < θc, while there is tc ≥ 0 such that g(t) = 0 for all t ≥ tc if θ(0) > θc.

Proof: This simply rephrases the results of the analysis of case 3 in Section 3. If ψ > 0, tc (> 0) is the

point in time at which the trajectory converging to (1, V̄0(1)) crosses the g = 0-boundary. tc = 0 for

ψ = 0 (see the upper left and the lower panels of Figure 3, respectively). Q.E.D.

The intuition for Proposition 2 is: the lower its competitors’ prices, the lower the share of aggregate

demand that accrues to a potential innovator. If too many competitors supply at competitive prices, it

does not pay to innovate, even though it would pay if the competitors’ products were more expensive.

As an example, let ρ = 0.02, ψ = 0.01, α = 0.6, a = 1, σ = 1, and L = 0.15. This gives rise to

case 3, and the stationary loci for V and θ intersect twice in the g > 0-region, at θ = 0.4352 and

θ = 0.7404 ≡ θc. The growth rate corresponding to the steady state with θ = 0.4352 is g = 1.30%,

14



which implies 0.87% growth of the x-sector. So this economy fails to reach a steady state with 0.87%

manufacturing output growth if the initial proportion of competitive markets exceeds 74.04%.

The implication of Proposition 2 for competition policy is that quick deregulation of monopolies may

do more harm than good, as it makes it harder for a potential innovator to compete with incumbent

producers. To illustrate this, consider an emerging economy with state monopolies in θm intermediate

goods markets initially. Assume θm < θc. Without deregulation, θ(0) = θm, and the economy con-

verges to the saddle-point stable steady state, in which growth is positive. Suppose, by contrast, the

government deregulates some of the monopolies, in which case they instantaneously become perfectly

competitive. That is, the government determines a starting value θ(0) in the interval [θm, 1] (3 θc).

From Proposition 2, we have:

COROLLARY 2 (“perils of quick liberalization”): Let the conditions of Proposition 2 be satisfied. If

markets are deregulated such that θ(0) > θc, then there is a tc > 0 such that g(t) = 0 for all t ≥ tc,

while g(t) > 0 for all t ≥ 0 without deregulation.

In the example above, if θm = 74%, then deregulating a further 0.1% of the markets means giving up

0.87% long-term manufacturing growth.

Tang and Wälde (2001) show that a no-growth trap is possible in the two-country open economy

version of our model with σ = 1 and ψ = 0. Proposition 2 is strongly reminiscent of their finding.

We now turn to the m-country open economy version of our model. We show that under certain

conditions the m-country economy behaves exactly identically to the hypothetical integrated economy

that occurs in the absence of national borders (i.e., the restrictions on labor movements they imply).

To do so, we generalize the analysis in Arnold (2007) (which assumes ψ = 0). The Tang-Wälde

(2001) result is then obtained as a corollary to this replication theorem.12 Consider a world economy

made up of m (≥ 2) countries of the type introduced in Section 2 (i.e., with identical parameter

values everywhere). Variables referring to individual countries, i, are distinguished by a superscript

i (= 1, . . . ,m). Variables without the superscript are world aggregates. We assume that knowledge

spillovers in R&D are international in scope, so that the R&D technologies become ṅi = nLiR/a.

An important issue is which products can be produced where. We start with the assumptions least

conducive to the possibility of replication: non-imitated goods have to be produced where they were

invented, and imitation is also “local”, in that in short time intervals, dt, a fraction (Li/L)ψ dt of

the nm goods not yet imitated before becomes producible in country i: ṅic = (Li/L)ψnm. We say

that replication of the equilibrium of the integrated economy (ignoring national borders that inhibit

movements of labor across borders) is feasible if this allocation is an equilibrium of the world economy

12Our result also generalizes Tang and Wälde (2001), to the cases σ > 0 and m > 2.
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(with national borders) as well.

PROPOSITION 3 (“replication”): If

Li − nic(t)xc(t)− nim(t)xm(t) ≥ 0, for all i = 1, . . . ,m, t ≥ 0, (22)

then replication is feasible.

Proof: Ignoring national borders, the equilibrium obeys equations (1)-(8) in Section 3 (where L ≡∑m
i=1 L

i). We have to show that this set of equations is also satisfied in the world economy with

national borders. Equation (1) follows from adding up ṅic = (Li/L)ψnm for all i = 1, . . . ,m. The

conditions for utility maximization in (2) are unaffected by the presence of national borders. Since

the cost minimization problem is also unchanged, so are the input coefficients, a(j), the zero profit

condition pX = [
∫ n
0 p(j)

1−εdj]1/(1−ε), the demands for intermediates x(j) = a(j)X, and, therefore, the

pricing rules and ensuing profit in (3) and the expressions for xm and xc in (4) (where X is the world

production of good x, xm is the output of any monopolistically supplied intermediate, and xc is the

output level of any competitively supplied intermediate). Evidently, the equations for pricing of the

final goods, the value of an innovation, and free entry into R&D, (i.e., (5)-(7), respectively) hold true

in equilibrium. Finally, labor market clearing in country i requires

Li = a
ṅi

n
+ nicxc + nimxm + Y i. (23)

Assumption (22) ensures that for each country, i, given nic and nim, there exist ṅi ≥ 0 and Y i ≥ 0 such

that (23) is satisfied. Adding up (23) for all i = 1, . . . ,m yields (8). Q.E.D.

Propositions 2 and 3 can be jointly used to prove a generalized version of the Tang-Wälde (2001)

theorem on the existence of a no-growth trap due to the opening up of international trade between

several countries. To do so, assume that at time t = 0, m countries with free international flows

of knowledge between them start to engage in trade with each other. Suppose that, while still in

autarky (i.e., before time t = 0), the producers do not take into account the possibility of future trade

liberalization, so that they do not have an incentive to avoid the invention of identical intermediates

in different countries (“duplication”). Let n denote the total “number” of different intermediates

producible somewhere in the world economy and nd the “number” of duplicated intermediates at the

point in time when trade is liberalized. From Propositions 2 and 3, we obtain:

COROLLARY 3 (generalization of Tang and Wälde, 2001): Let the conditions of Proposition 2 be

satisfied, and (22) holds. Then the no-growth trap described in Proposition 2 is an equilibrium of the

world economy if nd/n > θc.
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From a policy point of view, this corollary implies that, like quick deregulation in a closed economy,

quick trade liberalization can lead to stagnation in the long term: if countries decide to liberalize trade

at a point in time when nd/n ≥ θc, growth will come to a halt.13

Under the maintained assumptions, replication may fail due to the fact that a country, i, starts out with

a disproportionately large number of blueprints. If, for instance, nimxm > Li, then replication is not

feasible, as country i does not have enough resources to manufacture the integrated equilibrium outputs

of the intermediates with a domestic monopolist. On the other hand, as Li−nic(t)xc(t)−nim(t)xm(t) =

LiR + Yi, (22) is satisfied with strict equality in a steady state with LiR and Yi positive, it follows

that if the world economy is close to its steady state initially, then (22) will hold. Moreover, the

problem vanishes altogether under assumptions more conducive to the possibility of replication. To see

this, assume that intermediates invented in one country can be manufactured in a different country,

i, either within multinational firms or via international patent licensing. Assume further that once

imitation is possible in one country, i, it is possible in each country, i = 1, . . . ,m (“simultaneous

imitation”). Then, all production activities are “footloose”. Equation (23) is satisfied, for instance,

for ṅi/ṅ = nic/nc = nim/nm = Y i/Y = Li/L (and for many other allocations of productive activities

across countries as well). This proves:

COROLLARY 4: Let the conditions of Proposition 2 be satisfied. Then, with simultaneous imitation

and either multinational firms or international patent licensing, the no-growth trap described in Propo-

sition 2 is an equilibrium of the world economy if nd/n > θc.

5 Conclusion

This paper is concerned with the question of how competition with “cheap”, i.e., old or traditional,

goods affects the incentives to enter markets with new, innovative products. It shows that no growth

may be better than some growth and that both a closed economy and a world economy made up

of several countries engaged in free trade with each other may get stuck in a no-growth trap. As a

result, growth-enhancing policies may be misguided, and quick deregulation as well as quick trade

liberalization possibly lead to avoidable stagnation in the long term.

13To maintain growth, one has to wait for a point in time where nd/n < θc, or one has to choose a non-stationary

path of the imitation rate, ψ, which prevents too much competition. A thorough analysis would require announcement

effects and/or explicitly making ψ non-stationary.
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