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Abstract

Microfinance currently experiences a huge inflow of private investors and a surge in the use

of market instruments. This raises the question of what market equilibria in microfinance

markets look like and which kinds of market failure tend to afflict them. The present paper

conducts an equilibrium analysis of Besley and Coate’s (1995) group lending model with

enforcement problems. We show that a consideration of repayment rates alone is not sufficient

to predict market outcomes, as it is biased towards group lending. Market equilibria are likely

to exhibit the same kinds of market failure as equilibria in adverse selection models, viz.,

financial fragility, redlining, and credit rationing. Social sanctions ameliorate these problems,

but do not eliminate them.
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1 Introduction

In one of the seminal models in the theory of microfinance, Besley and Coate (1995) (henceforth:

“BC”) investigate the impact of joint liability in borrower groups on loan repayment rates.1 Re-

turns are sufficient to repay with certainty in their model, but due to enforcement problems,

borrowers do not repay unless the penalty for default weighs heavier than the burden of repay-

ment. Group lending, as opposed to individual lending, has two effects on repayment rates then.

For one thing, it enhances repayment when one borrower is able and willing to stand in for a

member of a group who does not repay. For another, however, liability for the repayment of the

other members of her group potentially discourages a borrower from repaying at all when she

would have repaid an individual loan. BC’s first key result is that, when payoffs are indepen-

dently and uniformly distributed and penalties for default are proportional to payoffs, group

lending leads to a higher repayment rate when the loan rate is sufficiently low, while the repay-

ment rate is higher with individual lending when the loan rate is high. Their second main result

is that social sanctions imposed on group members who refrain from making their contribution

to the contractual repayment reduce the drawback of group lending. If the sanctions are severe

enough, group lending yields the higher repayment rate.

BC emphasize that their results “should not be taken as implying that group lending is better

or worse than individual lending in any broader sense than repayment rates” (p. 16), so “a more

comprehensive analysis of the differences between the two lending schemes is an interesting

subject for further research” (p. 16). This “requires a richer framework than provided by the

model of this paper” (p. 15). The aim of the present paper is to supplement the BC model with

a minimum set of additional assumptions that enables us to study the nature of equilibrium and

the welfare effects of the different lending schemes.

The analysis is motivated by the recent huge inflow of private investors and the surge in the use

of market instruments in the market for funding microfinance institutions (MFIs). According to

Reille and Forster (2008, p. 1), “[t]he entry of private investors is the most notable change in

the microfinance investment marketplace . . . Individuals and institutional investors – including

international retail banks, investment banks, pension funds, and private equity funds – are all

looking for ways to channel capital into microfinance, and investment banking techniques are

being introduced to create investment vehicle alternatives that appeal to an increasingly broad

range of investors.” The total volume of the microfinance market is estimated at $25 billion

1See also Ghatak and Guinnane (1999, p. 209) and Armendariz de Aghion and Jonathan Morduch (2005, pp.

297-298).

1



in 2006. The top 150 MFIs are by now mature, mostly regulated, and profitable institutions,

and a further 800 are set to follow.2 These MFIs increasingly attract funds from individual and

institutional investors, as opposed to development finance institutions (DFIs).3 In particular,

private investors make up for more than 50 percent of the $4 billion foreign investment in MFIs.

A similar percentage of the cross-border investments is made not directly but via specialized

microfinance investment vehicles (MIVs). Except blended-value funds (BVFs), most MIVs meet

return expectations of about 5 percent in dollar terms.4 Investment banks have started to secu-

ritize MFI claims in the form of CDOs. Dieckmann (2007, p. 10) suggests a back-of-the-envelope

calculation that highlights the vast growth potential of the microcredit market: “While MFIs

currently serve an estimated 100 million micro-borrowers, the total potential demand is roughly

estimated at 1 bn” (given low penetration rates of below 3 percent in large markets such as

India and Brazil). So this $25 billion market may grow ten-fold if it attracts the required funds.

Exhausting this growth potential obviously necessitates a continuation of private capital in-

flows attracted by decent returns. So there is little doubt that the recent trend towards private

investments and market instruments will continue over the foreseeable future.

The equilibrium analysis of the BC model brings forth several interesting results. To begin

with, we consider the model without social sanctions. The equilibrium loan contract maximizes

expected borrower utility subject to the constraint that the MFIs break even. We demonstrate

that an equilibrium exists. In equilibrium, the borrowers get the finance needed for their projects

or not, depending on the level of expected returns and the nature and severity of the penalties.

Our first main result is that in an equilibrium with individual lending, it may be possible for

MFIs to offer a group lending contract that has a lower interest rate, increases the repayment

rate, and breaks even – but no borrower accepts this low-interest offer. This reflects the negative

effect of group lending on repayment incentives highlighted by BC. Theoretically, this shows

that repayment rates are an imperfect indicator for the viability of lending types in equilibrium,

systematically biased towards group lending. Practically, this means that inflows of private

capital will probably tend to crowd out group lending in favor of individual contracts.

Furthermore, we find that the return function (that relates the return on lending to the interest

rate) is a hump-shaped function over the relevant range of interest rates. Accordingly, the equi-

librium may be characterized by the same sorts of market failure that arise in adverse selection

models with a hump-shaped return function (see Stiglitz and Weiss, 1981, Section 1, pp. 395-

2See Dieckmann (2007, pp. 6-7).

3Our definitions of MFIs and DFIs follows Reille and Forster (2008).

4See Reille and Forster (2008, Figure 1, p. 2, and Table 1, p. 7).
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399). The equilibrium may be characterized by financial fragility, in that a small increase in the

rate of return required by the investors (viz., a rise beyond the maximum of the return func-

tion) leads to a complete breakdown of the market (cf. Mankiw, 1986). From a cross-sectional

perspective, when there are several microcredit markets of the BC type, redlining may occur:

all borrowers get loans in some markets (those where the maximum of the return function is no

less than the rate of return required by the investors), while no-one gets credit in other markets

(cf. Riley, 1987). This result may be helpful in understanding why microfinance works well in

some places but not in others. It implies that in order to maximize the total volume of credit

given, DFIs should target the least profitable markets consistent with their return expectations,

leaving the more profitable segments to private investors. Credit rationing may also arise: in a

given market, some borrowers get funds, while other, indistinguishable, borrowers do not (cf.

Stiglitz and Weiss, 1981). In sum, our second main result is that, irrespective of whether group

lending or individual lending arises as the equilibrium mode of finance, microcredit markets with

problems of enforcing repayments are likely to be characterized by the usual types of allocation

problems encountered in loan markets with asymmetric information.5

We also analyze the model with social sanctions. Here our main result is that even if social sanc-

tions are severe enough so that they eliminate the negative effect of group lending on repayment

rates and group lending unambiguously becomes the equilibrium mode of finance, the allocation

problems identified in the model without sanctions do not go away. That is, social sanctions

ameliorate, but do not eliminate, the negative impact of enforcement problems on equilibria in

microcredit markets.

The remainder of the paper is organized as follows. Section 2 describes the model without

social sanctions. Section 3 summarizes BC’s results on repayment rates. In Section 4, we go on

to characterize the model equilibrium (details of the derivations are delegated to a technical

appendix). Social sanctions are introduced in Section 5. Section 6 concludes.

2 Model

This section describes the model. We focus on the model with independently and uniformly

distributed payoffs and proportional penalties for default. Since we do not alter any of BC’s

5Arnold and Riley (2009) show that the return function cannot be hump-shaped in the original Stiglitz-Weiss

(1981) model, so the types of equilibria sketched above cannot arise. The equilibrium outcome of the Stiglitz-Weiss

(1981) model is an equilibrium with two interest rates, rationing at the lower rate, and market clearing at the

higher rate.
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assumptions, the exposition is kept brief. The additional assumptions made in our equilibrium

analysis are highlighted as Assumptions 1-3. The inclusion of social sanctions is postponed to

Section 5.

A given finite mass m (> 0) of risk-neutral borrowers without internal funds are endowed

with one project each. The project requires an input of one unit of capital. The payoffs θ are

independently and uniformly distributed: the distribution function is given by F (θ) = 0 for

θ < θ, F (θ) = (θ − θ)/(θ̄ − θ) for θ ∈ [θ, θ̄], and F (θ) = 1 for θ > θ̄, where

θ̄

2
> θ > 0.

MFIs offer loans. At the time a loan is made, the payoff θ is uncertain. Once realized, the project

return θ is common knowledge. An individual lending (IL) contract entails a repayment r. Group

lending (GL) consists of a loan of size 2 to a group of two borrowers and repayment 2r. When

the repayment decision is made, borrowers are endowed with sufficiently high income so that

they are able to repay. However, the enforcement of repayment is imperfect, so borrowers choose

between repaying (completely) or not (at all). The penalty for default is p(θ) = θ/β,6 where

β > max {1, θ} .7

BC assume that the penalty consists of “two components”, “a monetary loss due to seizure of

income or assets” and “a non-pecuniary cost resulting from being ‘hassled’ by the bank, from

loss of reputation, and so forth” (p. 4). Their focus on repayment rates makes an assumption

with regard to the relative magnitudes of the two components dispensable. We assume that each

of the two components is a constant proportion of the penalty:

Assumption 1: Of the penalty p(θ), a fraction α (∈ [0, 1]) is pecuniary and accrues to the MFI.

The remainder of the penalty is a deadweight loss.

The two borrowers in a group (i = 1, 2, say) play a two-stage repayment game. At the first stage,

the strategies are: contribute r to the joint repayment 2r or not. If both choose to contribute,

6There is an obvious tension between the assumptions about repayment ability on the one hand and penalties

on the other hand: there is a second kind of income besides project returns which enables borrowers to repay,

but the penalty is independent of the value of this income. One interpretation is that a borrower could mobilize

enough money to repay by selling her belongings, but the MFI does not expect her to do this and so does not

condition the penalty on the value of her belongings.

7This condition captures the idea that borrowers prefer the penalty over repayment in the case of minimum

project return even at zero interest: θ/β < r = 1 (cf. BC, p. 8). Given this inequality, our former assumption

θ̄/2 > θ is implied by BC’s (p. 8) somewhat stronger condition θ̄/2 > β. Without this fomer assumption, the

potential advantage of GL would not materialize, and IL would be unambigously better.
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the payoffs are θi − r, where θi is i’s realization of θ (i = 1, 2). If both choose not to contribute,

the payoffs are θi − p(θi) (i = 1, 2). If borrower i chooses to contribute and j (6= i) does not, i

decides, at stage 2, whether she repays 2r alone or not. If she repays, she gets θi− 2r and j gets

θj . If not, the payoffs are θ1 − p(θ1) and θ2 − p(θ2).

The supply of funds to the MFIs is perfectly elastic. That is, the MFIs’ cost of capital is

exogenously given. One may think either of private investors with a given required rate of

return or of DFIs or BVFs that can do with a below market rate of return.8 Let q denote loan

supply.

Assumption 2: The MFIs can raise any amount of capital q ∈ [0,m] at the constant cost of

capital ρ (≥ 1).

The equilibrium contract maximizes expected borrower utility. In the case of funding by return-

seeking investors, this is due to perfect competition among MFIs. For an MFI funded by a DFI,

this is a natural objective.

Assumption 3: The MFIs offer the (IL or GL) contract that maximizes borrowers’ expected

utility subject to the constraint that it breaks even.

3 Repayment rates

This section gives a brief summary of BC’s results on repayment probabilities with IL and GL.

Individual lending

Restrict attention to interest rates r ≥ θ/β (< 1), and define

A = [θ, βr).

Borrower i defaults if, and only if, p(θi) = θi/β < r, i.e., θi ∈ A. So the repayment rate (i.e., the

probability of repayment) is

ΠI(r) = 1− F (βr) =
θ̄ − βr

θ̄ − θ
. (1)

r = θ̄/β implies a zero repayment rate: ΠI(θ̄/β) = 0. Evidently, the repayment rate is zero for

all r > θ̄/β as well. So without loss of generality, we can confine attention to loan rates r ≤ θ̄/β.9

8Given the small proportion of microcredit markets in financial markets, an exogenous cost of capital is a

natural assumption. The main results go through with an upward-sloping loan supply curve as well, and we will

briefly tackle this case when we come to credit rationing.

9For 0 < r ≤ θ/β, the “default interval” A is not well defined, the borrower repays for all θ. Such interest rates

cannot arise in equilibrium, as the MFIs’ repayment falls short of ρ with certainty: r ≤ θ/β < 1 ≤ ρ.
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Figure 1: Cases that lead to repayment (shaded area) or default (non-shaded area) as an SPNE

with GL (left panel: case L, right panel: case H)

Group lending

Again, we restrict attention to loan rates such that θ/β ≤ r ≤ θ̄/β.10 By definition, p(θi) =

θi/β < r for θi ∈ A, so borrower i prefers the penalty over repayment. We distinguish two cases:

the low-interest case

case L:
θ

β
≤ r ≤ θ̄

2β

and the high-interest case

case H:
θ̄

2β
< r ≤ θ̄

β

(see the left and right panels of Figure 1, respectively). Let

B =

 [βr, 2βr) , case L[
βr, θ̄

]
, case H

.

For θi ∈ B, borrower i is willing to repay an individual loan (since r ≤ p(θi) = θi/β) but not a

group loan (since θi/β < 2r). Finally, let

C =
[
2βr, θ̄

]
, case L.

For θi ∈ C, i prefers to repay 2r rather than default.

BC (p. 17) characterize the subgame-perfect Nash equilibria (SPNE) of the repayment game:

(AA) For (θ1, θ2) ∈ A×A, both players default.

10We shall see below (in footnote 11) that, as with IL, lenders’ expected return falls short of ρ for loan rates

0 < r ≤ θ/β.
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(BB) For (θ1, θ2) ∈ B × B, both players choosing to repay is an equilibrium. Both players

deciding not to repay is also an SPNE, which is however ruled out by BC (p. 7) on the grounds

that it is Pareto-inferior. An alternative way to get rid of this “bad” equilibrium is elimination

of weakly dominated strategies (cf. Fudenberg and Tirole, 2000, Subsection 1.1.2): the strategy

not to repay at the first stage is weakly dominated by the strategy to repay.

(CC) For (θ1, θ2) ∈ C × C ( in case L), one borrower repays 2r and the other free-rides.

(BC) For (θ1, θ2) ∈ (B × C) ∪ (C × B) (in case L), the player i with θi ∈ C repays 2r and the

other free-rides.

In all these cases, the repayment received by the MFI is the same as with IL: α(θ1 + θ2)/β in

case AA and 2r otherwise.

(AB) For (θ1, θ2) ∈ (A×B)∪ (B×A), no-one repays. This is the drawback of GL: the borrower

i with θi ∈ B would repay a single loan but is discouraged from paying back anything by joint

liability.

(AC) For (θ1, θ2) ∈ (A× C) ∪ (C × A) (in case L), the borrower i with θi ∈ C repays 2r. This

is the advantage of GL: the high-return borrower stands in for her fellow group member.

In case L, the repayment rate is equal to the cumulated probability of cases BB, CC, BC, and

AC:

ΠG(r) = 2[1− F (2βr)]F (βr) + [1− F (βr)]2 =
−3β2r2 + 4βθr + θ̄2 − 2θθ̄

(θ̄ − θ)2
, case L. (2)

In case H, the repayment rate is the probability of case BB:

ΠG(r) = [1− F (βr)]2 =
(

θ̄ − βr

θ̄ − θ

)2

, case H. (3)

As with IL, we can confine attention to r ≤ θ̄/β, because all higher interest rates imply a zero

repayment rate.11

The BC result

BC’s (p. 8) main result for the model without social sanctions is that if θ̄/(3β) > 1, then GL

dominates IL in terms of repayment rates for low loan rates r < θ̄/(3β), and vice versa. This

follows from (1)-(3): ΠG(r) > ΠI(r) for r ∈ [1, θ̄/(3β)) and ΠI(r) > ΠG(r) for r ∈ (θ̄/(3β), θ̄/β].

If θ̄/(3β) ≤ 1, IL yields an unambiguously higher repayment rate.

11Loan rates 0 < r < θ/β cannot occur in equilibrium with GL. The interval A is not well defined in this case,

so only cases BB, BC, and CC can arise. The repayment rate is unity in each of these cases, so the MFIs are

unable to break even: r < θ/β < 1 ≤ ρ.
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4 Equilibrium

This section analyzes the equilibrium of the BC model supplemented with Assumptions 1-3.

We show that an equilibrium exists, consider several interesting special cases, and highlight the

allocation failures that potentially arise in equilibrium.

4.1 Definition of equilibrium

Given the penalty function p(θ) = θ/β and β > 1, all borrowers demand loans for any interest

rate, so loan demand is constant. This is because the cost of a loan (i.e., either the interest

repayment or the penalty) is less than the payoff in every state of nature: min{p(θ), r} =

min{θ/β, r} < θ.

In order to determine borrowers’ expected utility, we have to make an assumption about the

probability of being the borrower who repays or the free rider in case CC. The natural assumption

is that each borrower has an equal chance of being the free rider:

Assumption 4: The probability of being a borrower who repays when (θ1, θ2) ∈ C × C in case

L under GL is 1/2 for each borrower.12

Denote the set of realizations of (θ1, θ2) that trigger default with lending type tL (t ∈ {I, G})

as Dt: DI = A and DG = (A × A) ∪ (A × B) ∪ (B × A) (see the non-shaded areas in Figure

1). The complement of Dt is denoted St: SI = [θ, θ̄]\DI and SG = ([θ, θ̄]× [θ, θ̄])\DG (see the

shaded areas in Figure 1). ΠI(r) and ΠG(r) are the probabilities of θ ∈ SI and (θ1, θ2) ∈ SG,

respectively. Let θI = θ and θG = (θ, θ′). Then, using Assumption 1, the MFIs’ expected

revenue per dollar lent with lending type tL is

Rt(r) = Πt(r)r + [1−Πt(r)]αE [p(θ)|θt ∈ Dt] , t ∈ {I, G}. (4)

Using Assumption 4, the expected utility of a borrower who finances her project with tL is

Ut(r) = Πt(r)E(θ − r|θt ∈ St) + [1−Πt(r)]E [θ − p(θ)|θt ∈ Dt] , t ∈ {I, G}. (5)

We have to distinguish two types of equilibria:

Definition 1: A lending type, a loan rate, and a quantity of loans (tL, r, q) are a loan market

equilibrium with market clearing if

12Since the number of borrowers who repay is equal to the number of borrowers who free-ride, the probability is

necessarily 1/2 on average. Any mechanism that randomly assigns these roles to borrowers implies a probability

of 1/2 for everyone.
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(1) the amount of loans made is equal to demand: q = m;

(2) MFIs make zero profit: Rt(r) = ρ;

(3) no alternative contract that attracts borrowers yields positive profit: there is no (t′L, r′) 6=

(tL, r) such that Rt′(r′) > ρ and Ut′(r′) ≥ Ut(r).

Definition 2: A loan market equilibrium without trade prevails if there is no contract that

breaks even: Rt(r) < ρ for all (tL, r).

4.2 Existence of equilibrium

Using p(θ) = θ/β and (1)-(3), we obtain from (4) and (5) (see the technical appendix):

RI(r) =
−β(2− α)r2 + 2θ̄r − αθ2

β

2(θ̄ − θ)
(6)

UI(r) =
βr2 − 2θ̄r + θ̄2 −

(
1− 1

β

)
θ2

2(θ̄ − θ)
(7)

for IL and

RG(r) =
−β2(6− 5α)r3 + 4βθ(2− α)r2 + 2(θ̄2 − 2θθ̄ − αθ2)r + αθ3

β

2(θ̄ − θ)2
, case L, (8)

UG(r) =
β2r3 − 4βθr2 + (2θ2 − 2θ̄2 + 4θθ̄)r + θ̄3 − θθ̄2 − θ2θ̄ +

(
1− 1

β

)
θ3

2(θ̄ − θ)2
, case L, (9)

and

RG(r) =
β2(2− α)r3 − βθ̄(4− α)r2 + θ̄2(2 + α)r − α

β (θ2θ̄ + θθ̄2 − θ3)

2(θ̄ − θ)2
, case H, (10)

UG(r) =
−β2r3 + 3βθ̄r2 − 3θ̄2r + θ̄3 −

(
1− 1

β

)
(θ2θ̄ + θθ̄2 − θ3)

2(θ̄ − θ)2
, case H, (11)

for GL. Notice that RG(r) is continuous at the border r = θ̄/(2β) between cases L and H and

that RI(θ/β) = RG(θ/β) = θ/β and RI(θ̄/β) = RG(θ̄/β) = (α/β)(θ̄ + θ)/2 (see the technical

appendix).

Equations (6)-(11) will be used to characterize the equilibria of the types defined in Definitions

1 and 2. To pave the way for our equilibrium analysis of the BC model, we first prove existence

of equilibrium:

Proposition 1: Either a loan market equilibrium with market clearing or a loan market equi-

librium without trade exists.

Proof: For lending type t, let rt denote the minimum interest rate in the interval [θ/β, θ̄/β] such

that Rt(r) = ρ (see Figures 2 and 3 below). Since Rt(θ/β) = θ/β < 1 ≤ ρ and the Rt(r) functions

9



are polynomials, if maxr,t Rt(r) ≥ ρ, then rt exists for at least one t ∈ {I,G}. If rt exists for

exactly one lending type tL, denote this type as t′L. If both rI and rG exist, let t′L be the lending

type that yields higher borrower utility Ut′(rt′) (if the borrower utilities are identical, pick t′L

arbitrarily). We assert that (t′L, rt′ ,m) is an equilibrium with market clearing. Conditions (1)

and (2) in Definition 1 are satisfied. Clearly, if rt′ = θ̄/β, it is not possible to raise the expected

repayment beyond ρ. So consider rt′ < θ̄/β. By construction, Rt′(r) > ρ requires r > rt′ . From

(7), (9), and (11), U ′
t(r) < 0 for all r < θ̄/β and for t ∈ {I,G} (see the technical appendix). So

Ut′(r) < Ut′(rt′) whenever Rt′(r) > ρ. That is, MFIs cannot make a positive profit with lending

type t′. If rt, t 6= t′, exists (i.e., if it is possible to break even with the other lending type as well),

to make a profit Rt(r) > ρ with lending type tL, MFIs must set r > rt. As U ′
t(r) < 0, this implies

Ut(r) < Ut(rt) ≤ Ut′(rt′). This proves the validity of (3) in Definition 1. If maxr,t Rt(r) < ρ,

from Definition 2, there is a loan market equilibrium without trade. q.e.d.

Proposition 1 ensures that an equilibrium exists for all admissible parameter values. Moreover,

the proof of the proposition is constructive: equilibria with market clearing are found by looking

for the minimum break-even loan rates for the two lending types and comparing the correspond-

ing borrower expected utilities.

4.3 Special cases

There is one special case in which the BC analysis of repayment rates takes us a long way towards

equilibrium, viz. α = 0. In this special case, as the penalty p(θ) is completely non-pecuniary,

(4) becomes Rt(r) = Πt(r)r, so the lending type tL that yields the higher repayment rate at r

also yields the higher expected repayment at r. However, even so, it is not straightforward to

determine the optimal lending type. To see this, consider the following example:

Example 1: α = 0, θ = 1, θ̄ = 6, β = 1.5, ρ = 1.02. The minimum break-even loan rate is

lower with GL than with IL: rG = 1.1717 < 1.2254 = rI (see Figure 2). However, the associated

borrower expected utilities satisfy UI(rI) = 2.3214 > 2.3163 = UG(rG). Thus, the equilibrium

entails IL, even though MFIs can break even with GL at a lower interest rate. Put differently,

the equilibrium deadweight loss E(θ)−Ut(rt)−Rt(rt) caused by the non-pecuniary nature of the

penalty is higher with GL (0.1637) than with IL (0.1586). To see why, note that case L prevails

(since rG = 1.1717 < 2 = θ̄/(2β)), and case AB, in which GL is disadvantageous, occurs with

probability (2F (βr)[F (2βr)−F (βr)] =) 0.1889. In that case, with GL, the expected penalty for

the borrower with θ ∈ B is (E(θ| θ ∈ B)/β =) 1.7575 – way beyond the contractual repayment.

As a result, the expected penalty averaged over all borrowers is (E(θ|θG ∈ DG)/β =) 1.2641
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Figure 2: Example 1

and still exceeds the loan rate rG = 1.1717.13 This compares with an expected penalty of 0.9463

with IL. This example proves:

Proposition 2: There exist parameter values such that (IL, rI ,m) is a loan market equilibrium

with market clearing, even though rG < rI .

Example 1 demonstrates that the fact that GL breaks even at a lower interest rate does not

mean that it occurs in equilibrium. This raises the question of whether as an indicator of market

outcomes repayment rates are systematically biased in favor of GL. To address this question,

we pose the question: over which range of deposit rates ρ is IL the equilibrium mode of finance

despite having the higher break-even interest rate? We address this question in two steps. First,

we generalize Example 1. Then we conduct a systematic analysis of the parameter space.

Example 1 (ctd.): Let the parameters except ρ be as in Example 1. The maximum return that

can be generated with GL is 1.0741. As can be seen from Figure 2, for all ρ < 1.0667, GL has

the lower break-even interest rate. But the comparison of expected borrower utilities shows that

GL occurs in equilibrium only for deposit rates up to ρ = 1.0118 (see the technical appendix).

That is, for ((1.0667− 1.0118)/(1.0667− 1) =) 82.3% of the deposit rates for which GL breaks

even at a lower loan rate, IL is still the equilibrium mode of finance.

Going one step further, is the high proportion of IL equilibria in instances of rG < rI an artefact

of the parameters chosen in Example 1? To investigate this issue, we consider a wide array of

13This inefficiency is a result of the group members’ non-cooperative behavior.
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model parameters. We pick θ, θ̄, and β from specified intervals, maintaining the assumption

α = 0. The interval of θ-values [0.01, 1] is held constant. We pick θ̄ from one of the six intervals

[2.01, 4], [2.01, 5], . . . , [2.01, 9] and β from one of the five intervals [1.01, 1.5], [1.01, 2.0], . . . ,

[1.01, 3.5]. This gives rise to (6 · 5 =) 30 cases, each characterized by different upper bounds for

θ̄ and β. In each of the 30 cases, we consider eleven different values for θ (viz., 0.01, 0.1, 0.2,

. . . , 0.9, 1.0), eleven values for θ̄ (viz., 2.01 and ten equidistant values between 2 and the upper

bound of the interval), and eleven values of β (viz., 1.01 and ten equidistant values between

1 and the upper bound of the interval). In all, this gives (113 =) 1,331 subcases for each of

the 30 cases. For each subcase, we compute the interval of deposit rates ρ ≥ 1 (if it exists)

which gives rise to rG < rI and the subinterval for which IL is nonetheless used in equilibrium.

Comparing the length of the latter subinterval with the length of the former interval gives the

proportion of deposit rates with IL in equilibrium conditional on GL having the lower break-

even interest rate for the given subcase (i.e, the figure comparable to the 82.3% reported for

Example 1). Averaging over the subcases gives the mean proportion of instances in which IL

occurs in equilibrium despite the higher interest rate for each of the 30 cases (a summary is in

the technical appendix). This proportion ranges between 33.2 and 82.5 percent. The weighted

average is 45.7 percent. Thus, roughly speaking, in almost half of the number of cases in which

GL looks favorable judged by the break-even interest rate, IL is nonetheless the equilibrium

mode of finance.

Another interesting special case is α = 1. In this case, the penalties are 100 percent pecuniary, so

there is no deadweight loss, and all zero-profit contracts are equally good from the perspective

of the borrowers: Rt(r) + Ut(r) = E(θ) and Ut(r) = E(θ) − ρ when Rt(r) = ρ. From (6),

(8), and (10), it follows that RG(r) > RI(r) for all θ/β < r < θ̄/β when α = 1 (see the

technical appendix). That is, the GL break-even rate rG is lower than the IL break-even rate

rI for all ρ that give rise to loan market clearing (i.e., ρ < (1/β)(θ̄ + θ)/2). From the fact that

RI(θ/β) = RG(θ/β) and RI(θ̄/β) = RG(θ̄/β) for all α and continuity of the functions on the

right-hand sides of (6), (8), and (10) in α, it follows that for α sufficiently close to unity, if it is

possible to break even with both lending types, then GL generally entails the lower break-even

loan rate. One might suspect that, therefore, GL is unambiguously better than IL for α large.

Interestingly, however, the assertion of Proposition 2 also holds true for α close to one, as the

following example shows.

Example 2: α = 0.99, θ = 1.2, θ̄ = 4, β = 1.5, ρ = 1.02. The zero-profit loan rates are

rG = 0.9997 and rI = 1.0361 (see Figure 3). The fact that rG < 1 is interesting by itself: it

12



Figure 3: Example 2

shows that since (as pointed out in Example 1) the expected penalty may exceed the loan rate,

a loan rate r < 1 may suffice to make a return ρ > 1. The associated expected utility levels for

borrowers are UG = 1.5785 and UI = 1.5788.

We now turn to the allocation failures that might afflict market equilibria.

4.4 Financial fragility

There is “financial fragility” as in Mankiw (1986), in that a small increase in the cost of capital

potentially induces a complete breakdown of the loan market. This follows immediately from

the proof of Proposition 1: for maxr,t Rt(r) = ρ, an equilibrium with loan market clearing exists;

as soon as ρ rises, we have maxr,t Rt(r) < ρ, and the equilibrium entails no trade. For instance,

in Example 1, maxr,t Rt(r) = 1.2, so the market collapses when the lenders require a return in

excess of 20 percent. More generally, in the case α = 0, the maximum required return beyond

which the market collapses can be calculated explicitly:

Proposition 3: Suppose α = 0. Then

max
r,t

Rt(r) =
θ̄2

4β(θ̄ − θ)
. (12)

When ρ rises above this value, the unique equilibrium becomes one without trade.

Proof: From (6) with α = 0, RI(r) attains its maximum at r = θ̄/(2β), and the maximum value

is given by the right-hand side of (12). It can be shown that the functions on the right-hand

sides of (8) and (10) fall short of this value in cases L and H, respectively (see the technical

appendix). q.e.d.

13



The final two paragraphs of this section deal with two slight variations of the model, which give

rise to redlining and rationing.

4.5 Redlining

Assume there is a (non-empty) finite set J of observationally distinguishable classes of borrowers

of the type introduced in Section 2. Parameters, variables, and functions referring to class j ∈ J

are distinguished by a superscript j. For instance, Rj
t (r) gives the return on lending at a loan

rate r with lending type t to type-j borrowers. Let m =
∑

j∈J mj , so that Assumption 2 states

that the supply of capital at ρ is sufficient to finance all projects of all classes. An equilibrium

prevails if for each type j ∈ J , the conditions of either Definition 1 or Definition 2 are satisfied.

Redlining is said to prevail when there is market clearing for some types j and no trade for

others in equilibrium.

Proposition 4: Redlining prevails if, and only if,

min
j

max
r,t

Rj
t (r) < ρ ≤ max

j
max

r,t
Rj

t (r).

Proof: The equilibrium lending type, interest rate, and loan volume for each class are found

following the same steps as in the proof of Proposition 1. Types j with ρ ≤ maxr,t Rj
t (r) get

a loan (via IL or GL), types j with maxr,t Rj
t (r) < ρ do not. So the condition in the theorem

ensures that some classes get loans, while others do not. q.e.d.

The most interesting case arises when classes differ not with regard to payoffs but with regard

to the nature and magnitude of the penalties: θj = θ and θ̄j = θ̄ for all j, but the αj ’s and/or

βj ’s differ. In this case, if the condition of the proposition is satisfied, some borrowers do not

get credit, even though others with equally good projects do.

Example 3: There are three classes: J = {1, 2, 3}. Penalties are non-pecuniary, the cost of

capital and the payoffs are as in Example 1: ρ = 1.02, αj = 0, θ̄j = 6, and θj = 1 for all j. The

penalty parameters are β1 = 1.25, β2 = 1.5, and β3 = 2. Class-1 borrowers get loans with GL at

r1
G = 1.0613. As seen in Example 2, borrowers of type j = 2 get individual loans at r2

I = 1.2254.

For class 3, there is no way to break even: maxr,t R3
t (r) = 0.9. Due to the limited scope for

punishment after non-repayment, borrowers in this class are redlined.

The model with observationally distinguishable borrower classes has an important implication

for the roles of for-profit organizations and of DFIs, which can do with lower reruns: to maximize
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Figure 4: Example 4 (credit rationing)

the amount of credit given, DFIs have to direct their funds under management to banks that

finance classes with maximum expected repayment just above their required gross return, while

private investors target the high-yield market segments, for otherwise the DFIs would crowd out

private investment.

4.6 Credit rationing

Going back to the one-class case, assume now, instead of Assumption 2, that the loan supply

is a real-valued, strictly increasing function s(ρ). A lending type, a loan rate, and a quantity of

loans (tL, r, q) are a credit rationing equilibrium if (1) 0 < q < m, (2) and (3) in Definition 1 are

satisfied, and (4) q = s(ρ). A credit rationing equilibrium occurs when the supply of funds at

the return-maximizing interest rate falls short of the demand for credit:

Proposition 5: If

s

[
max

r,t
Rt(r)

]
< m,

then a credit rationing equilibrium occurs.

Example 4: Let α = 0, θ = 1, θ̄ = 5, and β = 1.5. Further, let m = 1 and s(ρ) = 0.8ρ.

The maximum lender return maxr,t Rt(r) = 1.0417 is obtained with IL at r = 1.6667. The

corresponding loan supply is s(1.2) = 0.8333. So in equilibrium, MFIs make individual loans

to 83.33 percent of the borrowers at r = 1.6667 (see Figure 4). The projects’ expected return
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player 2

repay don’t

player 1
repay θ1 − r / θ2 − r

θ1 − θ1
β / θ2 − θ2

β − s

don’t θ1 − θ1
β / θ2 − θ2

β

θ1 − θ1
β / θ2 − θ2

β

Figure 5: Stage 1 of the repayment game with social sanctions: case AB (θ1 ∈ B , θ2 ∈ A)

(i.e., (θ̄ + θ)/2 = 3) is way beyond the level needed to induce savers to supply enough capital to

finance all projects (i.e., ρ = 1.25), but the enforcement problem leads to credit rationing.

5 Social sanctions

Following BC (Section 4), we introduce social sanctions to the model. BC’s main result in this

regard is that if social sanctions are severe enough, GL yields a higher repayment rate than IL

(BC, Proposition 3, p. 12). We adopt a simple specification of social sanctions and show that

even if they ensure that GL implies the higher repayment rate, the loan market equilibrium still

displays the allocation problems analyzed in Subsections 4.4-4.6.

Assumption 5: If a borrower i in a group is willing to repay an individual loan (i.e., θi ≥ βr)

and decides to repay at stage 1 of the repayment game, then if her fellow group member j decides

not to repay, i imposes a sanction s > r on her. No sanctions are imposed otherwise.

That is, a social sanction is imposed when one borrower’s decision not to repay forces her fellow

group member to choose between repaying the group loan alone or accepting the penalty despite

her declared willingness to repay.14 As to the severity of the sanctions, since, as before, we can

focus on interest rates r ≤ θ̄/β, we could alternatively assume s > θ̄/β, so that the sanction

simply has to be “sufficiently large” relative to model parameters, irrespective of its specific

dependence on r, θi, and θj .15

The presence of the sanction strengthens the incentives to contribute in the repayment game.

For the cases defined in Section 3, the following SPNE arise:

14The assumption that no sanctions are imposed otherwise is immaterial. Adding sanctions in other instances as

well strengthens our conclusions. For the sake of clarity of exposition, we choose just the minimal set of sanctions

that make GL become the dominant mode of finance.

15In particular, the sanction may or may not differ depending on whether i repays 2r or accepts p(θi) at stage

2.
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(AA) Social sanctions do not play a role in this case, because neither player would repay an

individual loan. Both players default.

(AB) This is the critical case for GL. Repaying is a weakly dominant strategy for both players

at stage 1. So repayment becomes an SPNE (see Figure 5). Both players choosing not to repay

is also an SPNE. As in Section 3, we rule out this SPNE because it requires that both play a

weakly dominated strategy.16

(AC) The unique SPNE entails that both players repay.

(BB) Both players choosing to repay is an equilibrium. The other SPNE, in which both players

decide not to repay, is ruled out on the grounds that it requires that one borrower plays a weakly

dominated strategy and is Pareto-inferior.

(BC) Repaying is a strictly dominant strategy for the player i with θi ∈ C and a weakly dominant

strategy for the other player. The unique SPNE entails repayment.

(CC) Repaying is a strictly dominant strategy at stage 1 for both players. Neither tries to free-

ride.

Assumption 5 thus eliminates the drawback of GL: repayment occurs unless case AA occurs.

The repayment rate becomes

ΠG(r) = 1− F (βr)2 =
−β2r2 + 2βθr + θ̄2 − 2θθ̄

(θ̄ − θ)2
(13)

(there is no need to distinguish cases L and H). GL dominates IL in that it brings about

repayment in case AC, when the borrower i with θi ∈ C stands in for her fellow group member.

Accordingly, from (1) and (13), ΠG(r) > ΠI(r) whenever F (βr) < 1, i.e., r < θ̄/β. As before,

we can confine attention to r ≤ θ̄/β because Πt(r) = 0 for r > θ̄/β (t ∈ {I, G}). For the sake of

convenience, we also restrict attention to the case α = 0, so that RG(r) = ΠG(r)r > ΠI(r)r =

RI(r) for r < θ̄/β. The function RG(r) has the characteristic hump shape over the interval

(θ/β, θ̄/β) (see the technical appendix). Letting rG denote the minimum interest rate that helps

MFIs break even, we have:

Proposition 6: Let α = 0. If maxr RG(r) ≥ ρ, the unique equilibrium is (GL, rG,m). Otherwise

the unique equilibrium entails no trade.

Proof: Suppose maxr RG(r) ≥ ρ, so that rG is well defined. As in the absence of social sanctions,

GL contracts with higher interest rates yield lower expected borrower utility UG(r) (see the

technical appendix). So it is not possible to make a profit with a different GL contract. Hence,

(GL, rG,m) is the unique equilibrium if maxr RI(r) < ρ. In case it is possible to break even

16The outcome is not Pareto-inferior compared with the former SPNE.
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with IL as well, let rI denote the lowest break-even interest rate. The fact that RG(r) > RI(r)

for all r implies that rI > rG. It follows that the deadweight loss with GL at rI (i.e., E(θ) −

UG(rI) − RG(rI)) is higher than at rG (see the technical appendix). Furthermore, IL causes a

higher deadweight loss than GL at each given interest rate (see the technical appendix), so that

UI(rI) < UG(rG). That is, borrowers prefer GL at rG to IL at rI . Finally, an increase in the

interest rate raises the deadweight loss of IL, so that UI(r) < UG(rG) for all interest rates r that

help banks to break even with IL. Hence, it is not possible to enter the market with a profitable

IL contract. Clearly, no trade is the only viable equilibrium when maxr RG(r) < ρ. q.e.d

Proposition 6 shows that the disadvantage of GL, which potentially makes IL the equilibrium

mode of finance despite the higher break-even interest rate (cf. Proposition 2), can be overcome

by means of social sanctions: with social sanctions obeying Assumption 5, lending takes place

using a GL contract whenever the volume of trade is positive in equilibrium. This does not

mean, however, that GL helps get rid of the enforcement problem altogether: the fact that the

expected repayment RG(r) is hump-shaped implies that the allocation problems encountered

in Subsections 4.4-4.6 continue to be prevalent. That is, there is financial fragility, in that the

market collapses when ρ rises beyond maxr RG(r); if there are several borrower classes j, those

with maxr Rj
G(r) < ρ are redlined; and if the capital supply is a strictly increasing function s(ρ),

credit rationing arises if s[maxr RG(r)] < m (cf. Propositions 3-5).

6 Conclusion

BC analyze repayment rates in a GL model with enforcement problems. The recent trend towards

private investments and market instruments in microfinance markets raises the question of what

equilibrium in the BC model looks like. The present paper shows that, no matter whether social

sanctions are present or not and irrespective of the type of finance used, the market equilibrium

suffers from the usual allocation problems known from the imperfect information literature. This

means that the prospective growth of the market for microcredit is unlikely to be a frictionless

process. MFIs will have to continue to take due care that borrowers have proper incentives to

repay. If the DFIs’ objective is to maximize the loan volume, they should target MFIs active

in the less profitable segments of the market and leave the more profitable business to private

investors.
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Technical Appendix

Expected repayment and expected utility in case L:

E(θ|θG ∈ DG) =
1

1−ΠG(r)

(∫ 2βr

θ

1
θ̄ − θ

∫ βr

θ

θ

θ̄ − θ
dθ dθ′ +

∫ βr

θ

1
θ̄ − θ

∫ 2βr

βr

θ

θ̄ − θ
dθ dθ′

)
=

1
1−ΠG(r)

[
F (2βr)
θ̄ − θ

∫ βr

θ
θ dθ +

F (βr)
θ̄ − θ

∫ 2βr

βr
θ dθ

]
=

1
1−ΠG(r)

[
2βr − θ

(θ̄ − θ)2
β2r2 − θ2

2
+

βr − θ

(θ̄ − θ)2
4β2r2 − θ2

2

]
=

1
1−ΠG(r)

5β3r3 − 4β2θr2 − 2βθ2r + θ3

2(θ̄ − θ)2

RG(r) = ΠG(r)r + [1−ΠG(r)]αE

(
θ

β

∣∣∣∣θG ∈ DG

)
=

1
2(θ̄ − θ)2

[
(−6β2r2 + 8βθr + 2θ̄2 − 4θθ̄)r +

α

β
(5β3r3 − 4β2θr2 − 2βθ2r + θ3)

]

=
−β2(6− 5α)r3 + 4βθ(2− α)r2 + 2(θ̄2 − 2θθ̄ − αθ2)r + αθ3

β

2(θ̄ − θ)2
.

θ̄ + θ

2
= E(θ)

= ΠG(r)E(θ|θG ∈ SG) + [1−ΠG(r)]E(θ|θG ∈ DG)

ΠG(r)E(θ|θG ∈ SG) =
θ̄ + θ

2
− [1−ΠG(r)]E(θ|θG ∈ DG)

=
θ̄ + θ

2
− 5β3r3 − 4β2θr2 − 2βθ2r + θ3

2(θ̄ − θ)2

=
−5β3r3 + 4β2θr2 + 2βθ2r + θ̄3 − θθ̄2 − θ2θ̄

2(θ̄ − θ)2

UG(r) = ΠG(r)E(θ − r|θG ∈ SG) + [1−ΠG(r)]E
(

θ − θ

β

∣∣∣∣θG ∈ DG

)
=

−5β3r3 + 4β2θr2 + 2βθ2r + θ̄3 − θθ̄2 − θ2θ̄

2(θ̄ − θ)2

−−3β2r2 + 4βθr + θ̄2 − 2θθ̄

(θ̄ − θ)2
r

+
(

1− 1
β

)
5β3r3 − 4β2θr2 − 2βθ2r + θ3

2(θ̄ − θ)2

=
β2r3 − 4βθr2 + (2θ2 − 2θ̄2 + 4θθ̄)r + θ̄3 − θθ̄2 − θ2θ̄ +

(
1− 1

β

)
θ3

2(θ̄ − θ)2
.
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Expected repayment and expected utility in case H:

E(θ|θG ∈ DG) =
1

1−ΠG(r)

(∫ θ̄

θ

1
θ̄ − θ

∫ βr

θ

θ

θ̄ − θ
dθ dθ′ +

∫ βr

θ

1
θ̄ − θ

∫ θ̄

βr

θ

θ̄ − θ
dθ dθ′

)

=
1

1−ΠG(r)

[
1

θ̄ − θ

∫ βr

θ
θ dθ +

F (βr)
θ̄ − θ

∫ θ̄

βr
θ dθ

]

=
1

1−ΠG(r)

[
1

θ̄ − θ

β2r2 − θ2

2
+

βr − θ

(θ̄ − θ)2
θ̄2 − β2r2

2

]
=

1
1−ΠG(r)

−β3r3 + β2θ̄r2 + βθ̄2r − θ2θ̄ − θθ̄2 + θ3

2(θ̄ − θ)2

RG(r) = ΠG(r)r + [1−ΠG(r)]αE

(
θ

β

∣∣∣∣θG ∈ DG

)
=

(
θ̄ − βr

θ̄ − θ

)2

r +
α

β

−β3r3 + β2θ̄r2 + βθ̄2r − θ2θ̄ − θθ̄2 + θ3

2(θ̄ − θ)2

=
β2(2− α)r3 − βθ̄(4− α)r2 + θ̄2(2 + α)r − α

β (θ2θ̄ + θθ̄2 − θ3)

2(θ̄ − θ)2
.

ΠG(r)E(θ|θG ∈ SG) =
θ̄ + θ

2
− [1−ΠG(r)]E(θ|θG ∈ DG)

=
θ̄ + θ

2
− −β3r3 + β2θ̄r2 + βθ̄2r − θ2θ̄ − θθ̄2 + θ3

2(θ̄ − θ)2

=
β3r3 − β2θ̄ − βθ̄2r + θ̄3

2(θ̄ − θ)2

UG(r) = ΠG(r)E(θ − r|θG ∈ SG) + [1−ΠG(r)]E
(

θ − θ

β

∣∣∣∣θG ∈ DG

)
=

β3r3 − β2θ̄r2 − βθ̄2r + θ̄3

2(θ̄ − θ)2
−
(

θ̄ − βr

θ̄ − θ

)2

r

+
(

1− 1
β

)
−β3r3 + β2θ̄r2 + βθ̄2r − θ2θ̄ − θθ̄ + θ3

2(θ̄ − θ)2

=
θ̄3

2(θ̄ − θ)2
− 2θ̄2r − 4βθ̄r2 + 2β2r3

2(θ̄ − θ)2

+
−θ2θ̄ − θθ̄2 + θ3 + β2r3 − βθ̄r2 − θ̄2r + 1

β (θ2θ̄ + θθ̄2 − θ3)

2(θ̄ − θ)2

=
−β2r3 + 3βθ̄r2 − 3θ̄2r + θ̄3 −

(
1− 1

β

)
(θ2θ̄ + θθ̄2 − θ3)

2(θ̄ − θ)2
.
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Proof that RI(θ/β) = RG(θ/β) = θ/β:

RI

(
θ

β

)
=

− θ2

β + 2 θθ̄
β − θ2

β

2(θ̄ − θ)

=
θ
β (θ̄ − θ)

θ̄ − θ

=
θ

β

RG

(
θ

β

)
=

−β2(6− 5α) θ3

β3 + 4βθ(2− α) θ2

β2 + 2(θ̄2 − 2θθ̄ − αθ2) θ
β + α θ3

β

2(θ̄ − θ)2

=
2 θ3

β + 2 θ
β (θ̄2 − 2θθ̄)

2(θ̄ − θ)2

=
θ

β

θ2 − 2θθ̄ + θ̄2

(θ̄ − θ)2

=
θ

β
.

Proof that RI(θ̄/β) = RG(θ̄/β) = (α/β)(θ̄ + θ)/2:

RI

(
θ̄

β

)
=

−β(2− α)
(

θ̄
β

)2
+ 2θ̄ θ̄

β − α θ2

β

2(θ̄ − θ)

=
α θ̄2

β − α θ2

β

2(θ̄ − θ)

=
α

β

θ̄ + θ

2

RG

(
θ̄

β

)
=

β2(2− α)
(

θ̄
β

)3
+ βθ̄(4− α)

(
θ̄
β

)2
+ θ̄2(2 + α) θ̄

β −
α
β (θ2θ̄ + θθ̄2 − θ3)

2(θ̄ − θ)2

=
(2− α) θ̄3

β − (4− α) θ̄3

β + (2 + α) θ̄3

β − α
β (θ2θ̄ + θθ̄2 − θ3)

2(θ̄ − θ)2

=
α

β

θ̄3 − θ2θ̄ − θθ̄2 + θ3

2(θ̄ − θ)2

=
α

β

θ̄2(θ̄ − θ)− θ2(θ̄ − θ)
2(θ̄ − θ)2

=
α

β

θ̄2 − θ2

2(θ̄ − θ)

=
α

β

θ̄ + θ

2
.
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Proof that U ′
t(r) < 0 for r < θ̄/β, t ∈ {I, G}:

Individual lending

From (7),

U ′
I(r)(θ̄ − θ) = βr − θ

< 0 ⇔

r <
θ̄

β
.

Group lending, case L

Let UGL(r) denote the function on the right-hand side of (9). Differentiating with respect to r

shows gives

U ′
GL(r)2(θ̄ − θ)2 = 3β2r2 − 8βθr + (2θ2 − 2θ̄2 + 4θθ̄)

= 3β2

(
r2 − 8

3
θ

β
r +

2
3

θ2 − θ̄2 + 2θθ̄

β2

)
< 0 ⇔

0 > r2 − 8
3

θ

β
r +

2
3

θ2 − θ̄2 + 2θθ̄

β2
.

Let x ≡ θ̄/(2θ) > 1. The roots of the equation of the right-hand side of the inequality are

r1/2 =
4
3

θ

β
±

{
16
9

(
θ

β

)2

− 2
3

(
θ

β

)2
[
1−

(
θ̄

θ

)2

+ 2
θ̄

θ

]} 1
2

=
4
3

θ

β

[
1±

(
3
2
x2 − 3

2
x +

5
8

) 1
2

]
.

Since x > 1, the discriminant is positive, so there are two real roots.

�
r

�

� �

r1 r2

θ
β

θ̄
2β

The smaller root r1 is less than θ/β iff

θ

β
> r1

=
4
3

θ

β

[
1−

(
3
2
x2 − 3

2
x +

5
8

) 1
2

]

1 >
4
3

[
1−

(
3
2
x2 − 3

2
x +

5
8

) 1
2

]
.
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Since x > 1, a sufficient condition for the validity of this inequality is

1 >
4
3

[
1−

(
5
8

) 1
2

]
= 0.2792.

The bigger root r2 is greater than θ̄/(2β) iff

θ̄

2β
< r2

=
4
3

θ

β

[
1 +

(
3
2
x2 − 3

2
x +

5
8

) 1
2

]

x <
4
3

[
1 +

(
3
2
x2 − 3

2
x +

5
8

) 1
2

]
≡ f(x).

�

�
x

x

�

1

1

�

f(x)

4
3

[
1 +

(
5
8

)1/2
]

This follows from the fact that

f(1) =
4
3

[
1 +

(
5
8

) 1
2

]
> 1

and f ′(x) > 1 for all x ≥ 1:

f ′(x) =
4
3

(
3x− 3

2

)
1
2

(
3
2
x2 − 3

2
x +

5
8

)− 1
2

> 1 ⇔

12x− 6 > 6
(

3
2
x2 − 3

2
x +

5
8

) 1
2

2x− 1 >

(
3
2
x2 − 3

2
x +

5
8

) 1
2

4x2 − 4x + 1 >
3
2
x2 − 3

2
x +

5
8

5
2
x(x− 1) +

3
8

> 0.

So the r-values consistent with the definition of case L form a subset of the r-values such that

U ′
GL(r) < 0: [

θ

β
,

θ̄

2β

]
⊂ (r1, r2).
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This proves U ′
G(r) < 0 in case L.

Group lending, case H

Letting UGH(r) denote the function on the right-hand side of (11), we have:

U ′
GH(r)2(θ̄ − θ)2 = −3β2r2 + 6βθ̄r − 3θ̄2

= −3β2

[
r2 − 2

θ̄

β
r +

(
θ̄

β

)2
]

= −3β2

(
r − θ̄

β

)2

< 0.

So U ′
G(r) < 0 in case H.

Example 1 (ctd.)

As remarked at the end of Section 3, BC (p. 8) show that if α = 0 and θ̄ > 3β, we have

RG(r) > RI(r) for r < θ̄/(3β). Using the results derived in the proof of Proposition 3 below,

we find that RG(r) attains its global maximum between r = θ̄/(3β) and r = θ̄/(2β). So the

situation in which IL is the equilibrium mode of finance, even though rG < rI arises if, and only

if, UI > UG for r < θ̄/(2β). The figure below applies to the extended Example 1.
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How likely is IL in equilibrium despite rG < rI?

The table below summarizes the mean proportion of instances of IL despite rG < rI in the 30

cases.

Case no. \bar \theta_max \beta_max
# subcases 

with trade
# subcases 
with no GL

# subcases with 
not r_G<r_I

# subcases 
with r_G<r_I 

average proportion of 
r_G<r_I subcases with IL

1 4 1,5 125 82 10 33 82,5% 0,4%
2 5 1,5 340 165 14 161 67,2% 1,6%
3 6 1,5 556 186 11 359 56,6% 2,9%
4 7 1,5 697 152 10 535 46,6% 3,6%
5 8 1,5 793 128 7 658 38,6% 3,7%
6 9 1,5 864 111 9 744 33,2% 3,6%
7 4 2 74 47 5 22 81,3% 0,3%
8 5 2 187 85 10 92 65,4% 0,9%
9 6 2 323 120 5 198 55,8% 1,6%

10 7 2 456 137 7 312 49,1% 2,2%
11 8 2 587 149 4 434 45,2% 2,8%
12 9 2 687 131 7 549 41,3% 3,3%
13 4 2,5 57 35 5 17 77,7% 0,2%
14 5 2,5 137 62 6 69 63,4% 0,6%
15 6 2,5 227 80 3 144 54,8% 1,1%
16 7 2,5 318 93 4 221 48,2% 1,5%
17 8 2,5 413 110 2 301 43,9% 1,9%
18 9 2,5 513 126 2 385 41,4% 2,3%
19 4 3 51 31 4 16 76,4% 0,2%
20 5 3 112 47 7 58 61,7% 0,5%
21 6 3 183 63 5 115 52,9% 0,9%
22 7 3 252 72 4 176 47,4% 1,2%
23 8 3 323 82 3 238 43,6% 1,5%
24 9 3 398 92 3 303 41,2% 1,8%
25 4 3,5 45 26 3 16 76,4% 0,2%
26 5 3,5 96 39 4 53 61,2% 0,5%
27 6 3,5 154 51 3 100 52,3% 0,8%
28 7 3,5 212 61 3 148 46,3% 1,0%
29 8 3,5 267 66 2 199 42,8% 1,2%
30 9 3,5 328 74 5 249 40,1% 1,4%

6905 54,5% 45,7%
unweighted average weighted average

Proof that RG(r) > RI(r) for θ/β < r < θ̄/β when α = 1:

Case L

Let RI1(r) and RGL1(r) denote the functions on the the right-hand sides of (6) and (8) for α = 1,

respectively:

RI1(r) =
−βr2 + 2θ̄r − θ2

β

2(θ̄ − θ)

RGL1(r) =
−β2r3 + 4βθr2 + 2(θ̄2 − 2θθ̄ − θ2)r + θ3

β

2(θ̄ − θ)2
.

As shown above,

RI1

(
θ

β

)
= RGL1

(
θ

β

)
=

θ

β
.

Differentiating RI1(r) and RGL1(r) gives

R′
I1(r) =

−2βr + 2θ̄

2(θ̄ − θ)

R′
GL1(r) =

−3β2r2 + 8βθr + 2(θ̄2 − 2θθ̄ − θ2)
2(θ̄ − θ)2

.
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Evaluating the derivatives at r = θ/β yields

R′
I1

(
θ

β

)
=

−2θ + 2θ̄

2(θ̄ − θ)
= 1

R′
GL1

(
θ

β

)
=

−3θ2 + 8θ2 + 2θ̄2 − 4θθ̄ − 2θ2

2(θ̄ − θ)2

=
3θ2 + 2θ̄2 − 4θθ̄

2(θ̄ − θ)2
.

It follows that R′
GL1(θ/β) > R′

I1(θ/β):

R′
GL1

(
θ

β

)
> R′

I1

(
θ

β

)
3θ2 + 2θ̄2 − 4θθ̄

2(θ̄ − θ)2
> 1

3θ2 + 2θ̄2 − 4θθ̄ > 2(θ̄ − θ)2

= 2θ̄2 − 4θθ̄ + 2θ2

θ2 > 0.

That is, RGL1(r) intersects RI1(r) from below at r = θ/β. Since

RGL1(0) =
θ3

2β(θ̄ − θ)2
> 0 > − θ2

2β(θ̄ − θ)
= RI1(0),

there is an intersection of RGL1(r) and RI1(r) at some r between 0 and θ/β. Furthermore, we

have

RI1

(
θ̄

β

)
=

1
β

θ̄ + θ

2

RGL1

(
θ̄

β

)
=

− θ̄3

β + 4 θθ̄2

β + 2 θ̄3

β − 4 θθ̄2

β − 2 θ2θ̄
β + θ3

β

2(θ̄ − θ)2

=
1
β

θ̄3 + θ3 − 2θ2θ̄

2(θ̄ − θ)2

=
1
β

θ̄2 − θ2 + θθ̄

2(θ̄ − θ)
.

So RGL1(θ̄/β) > RI1(θ̄/β):

RGL1

(
θ̄

β

)
> RI1

(
θ̄

β

)
1
β

θ̄2 − θ2 + θθ̄

2(θ̄ − θ)
>

1
β

θ̄2 − θ2

2(θ̄ − θ)
θ̄2 − θ2 + θθ̄ > θ̄2 − θ2

θθ̄ > 0.
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Since RGL1(r) < RI1(r) as r grows large, there is an intersection of RGL1(r) and RI1(r) at some

r > θ̄/β. So we have identified three points of intersection of RI1(r) and RGL1(r). Since RI1(r)

and RGL1(r) are second-order and third-order polynomials, respectively, there cannot be any

further intersections, so that

RGL1(r) > RI1(r),
θ

β
< r ≤ θ̄

β
.

From the definition of case L (i.e., θ/β ≤ r ≤ θ̄/(2β)), it follows that except at the lower

boundary r = θ/β we have

RG(r) > RI(r), case L.

An example is illustrated in the figure below.

Case H

Let RGH1(r) denote the function on the the right-hand side of (10) for α = 1:

RGH1(r) =
β2r3 − βθ̄3r2 + θ̄23r − 1

β (θ2θ̄ + θθ̄2 − θ3)

2(θ̄ − θ)2
.
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Evaluating RGH1(r) at r = θ/β yields

RGH1

(
θ

β

)
=

β2
(

θ
β

)3
− 3βθ̄

(
θ
β

)2
+ 3θ̄2 θ

β −
1
β (θ2θ̄ + θθ̄2 − θ3)

2(θ̄ − θ)2

=
θ

β

θ2 − 3θθ̄ + 3θ̄2 − θθ̄ − θ̄2 + θ2

2(θ̄ − θ)2

=
θ

β

2θ2 + 2θ̄2 − 4θθ̄

2(θ̄ − θ)2

=
θ

β

= RI1

(
θ

β

)
.

We have seen in the main text that

RGH1

(
θ̄

β

)
= RI1

(
θ̄

β

)
=

1
β

θ + θ̄

2
.

Differentiating RGH1(r) gives

R′
GH1(r) =

3β2r2 − 6βθ̄r + 3θ̄2

2(θ̄ − θ)2

=
3β2

(
r − θ̄

β

)2

2(θ̄ − θ)2
.

Evaluating R′
I1(r) and R′

GH1(r) at r = θ̄/β gives

R′
I1

(
θ̄

β

)
= R′

GH1

(
θ̄

β

)
= 0.

So RI1(r) and RGH1(r) have one intersection at r = θ/β and a “double intersection” at r = θ̄/β.

Given that RI1(r) and RGH1(r) are second-order and third-order polynomials, respectively, there

are no further intersections. It follows that

RGH1(r) > RI1(r),
θ

β
< r <

θ̄

β
.

So except at the r = θ̄/β we have

RG(r) > RI(r), case H.
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Proof of Proposition 3:

Define the right-hand side of (6) for α = 0 as RI0(r):

RI0(r) =
−2βr2 + 2θ̄r

2(θ̄ − θ)

R′
I0(r) =

−4βr + 2θ̄

2(θ̄ − θ)
.

r = θ̄/(2β) maximizes RI0(r). The maximum value is

RI0

(
θ̄

2β

)
=

−2β
(

θ̄
2β

)2
+ 2θ̄

(
θ̄
2β

)
2(θ̄ − θ)

=
θ̄2

4β(θ̄ − θ)
.

To prove Proposition 3, we have to show that RG(r) cannot exceed this value.

Case L

Let RGL0(r) denote the right-hand side of (8) for α = 0:

RGL0(r) =
−6β2r3 + 8βθr2 + 2(θ̄2 − 2θθ̄)r

2(θ̄ − θ)2

We have to show that

RGL0(r) <
θ̄2

4β(θ̄ − θ)
, case L.
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Notice that

RI0(0) = RGL0(0) = 0.

We have RGL0(r) < RI0(r) iff

−6β2r3 + 8βθr2 + 2(θ̄2 − 2θθ̄)r
2(θ̄ − θ)2

<
−2βr2 + 2θ̄r

2(θ̄ − θ)
−6β2r2 + 8βθr + 2(θ̄2 − 2θθ̄) < (−2βr + 2θ̄)(θ̄ − θ)

= −2β(θ̄ − θ)r + 2(θ̄2 − θθ̄)

−6β2r2 + 8βθr − 2θθ̄ < −2β(θ̄ − θ)r

6β2r2 − 2β(θ̄ + 3θ)r + 2θθ̄ > 0

r2 − θ̄ + 3θ

3β
r +

θθ̄

3β2
> 0.

The roots of the quadratic equation on the left-hand side are:

r1/2 =
θ̄ + 3θ

6β
±

√
1
4

(
θ̄ + 3θ

3β

)2

− θθ̄

3β2

=
θ̄ + 3θ

6β
± 1

6β

√
θ̄2 − 6θθ̄ + 9θ2

=
θ̄ + 3θ

6β
± 1

6β

√
(θ̄ − 3θ)2

=
(θ̄ + 3θ)± (θ̄ − 3θ)

6β

=
{

θ

β
,

θ̄

3β

}
<

θ̄

2β
.

So the three intersections of RGL0(r) and RI0(r) occur at r = 0, r = r1 = θ/β, and r = r2 =

θ̄/(3β).
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Suppose first that θ̄ ≤ 3θ, so that

r2 =
θ̄

3β
<

θ

β
= r1.

Then

RGL0(r) < RI0(r), r >
θ

β
.

Next, consider the case θ̄ > 3θ, in which r2 = θ̄/(3β) > θ/β = r1. Differentiating RGL0(r) gives

R′
GL0(r) =

−18β2r2 + 16βθr + 2(θ̄2 − 2θθ̄)
2(θ̄ − θ)2

.

So

R′
GL0(0) =

θ̄(θ̄ − 2θ

(θ̄ − θ)2

> 0

R′
GL0

(
θ̄

3β

)
=

−18β2
(

θ̄
3β

)2
+ 16βθ θ̄

3β + 2(θ̄2 − 2θθ̄)

2(θ̄ − θ)2

=
−2θ̄2 + 16

3 θ̄θ + 2θ̄2 − 4θ̄θ

2(θ̄ − θ)2

=
2θ̄θ

3(θ̄ − θ)2

> 0.

The fact that RGL0(r) is upward-sloping at r = 0 and at r = θ̄/(3β) implies that it is upward-

sloping in between. It follows that

RGL0(r) < RGL0

(
θ̄

3β

)
= RI

(
θ̄

3β

)
, r <

θ̄

3β

13



and

RGL0(r) < RI0(r), r >
θ̄

3β
.

This completes the proof that

RGL0(r) <
θ̄2

4β(θ̄ − θ)
, case L.

Case H

Let RGH0(r) denote the right-hand side of (10) for α = 0:

RGH0(r) =
2β2r3 − 4βθ̄r2 + 2θ̄2r

2(θ̄ − θ)2

R′
GH0(r) =

6β2r2 − 8βθ̄r + 2θ̄2

2(θ̄ − θ)2
.

We have R′
GH0(r) = 0 iff

0 = 6β2r2 − 8βθ̄r + 2θ̄2

0 = r2 − 4
3

θ̄

β
r +

1
3

(
θ̄

β

)2

r1/2 =
2
3

θ̄

β
±

√
4
9

(
θ̄

β

)2

− 1
3

(
θ̄

β

)2

=
2
3

θ̄

β
± 1

3
θ̄

β

=
{

θ̄

3β
,

θ̄

β

}
.

RGH0(r) is downward-sloping in the interval (θ̄/(2β), θ̄/β), so

RGH0(r) ≤ RGH0

(
θ̄

2β

)
, case H.

From coninuity of RG(r),

RGH0

(
θ̄

2β

)
= RGL0

(
θ̄

2β

)
.

Using

RGL0

(
θ̄

2β

)
<

θ̄2

4β(θ̄ − θ)
,

it follows that

RGL0(r) <
θ̄2

4β(θ̄ − θ)
, case H.

With regard to example 1, we get

R′
GL0

(
θ̄

2β

)
= −

5
2

(
θ̄ − 8

5θ
)

2(θ̄ − θ)2
< 0.
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So RGL0(r) attains a maximum between r = θ̄/(3β) and r = θ̄/(2β). The maximizing r-value

can be calculated explicitly:

0 = R′
GL0(r)

0 = −18β2r2 + 16βθr + 2(θ̄2 − 2θθ̄)

0 = r2 − 8
9

θ

β
r − θ̄2 − 2θθ̄

9β2

r1/2 =
4
9

θ

β
±

[
1
4

(
8
9

θ

β

)2

+
θ̄2 − 2θθ̄

9β2

] 1
2

=
4
9

θ

β

[
1±

(
1 +

9
16

θ̄2 − 2θθ̄

θ2

) 1
2

]
The smaller root is negative, the larger positive: r1 < 0 < r2.

Proof that RG(r) is hump-shaped in the model with social sanctions

RG

(
θ

β

)
= ΠG

(
θ

β

)
θ

β

=
θ

β

RG

(
θ̄

β

)
= ΠG

(
θ̄

β

)
θ̄

β

= 0

RG(r) = ΠG(r)r

=
−β2r3 + 2βθr2 + (θ̄2 − 2θθ̄)r

(θ̄ − θ)2

R′
G(r) =

−3β2r2 + 4βθr + θ̄2 − 2θθ̄

(θ̄ − θ)2

R′
G

(
θ

β

)
=

−3β2
(

θ
β

)2
+ 4βθ θ

β + θ̄2 − 2θθ̄

(θ̄ − θ)2

=
−3θ2 + 4θ2 + θ̄2 − 2θθ̄

(θ̄ − θ)2

=
(θ̄ − θ)2

(θ̄ − θ)2

= 1

> 0.

The fact that RG(r) has no root in the interval (θ/β, θ̄/β) and that RG(r) is positive and

upward-sloping at r = θ/β and equals zero for r = θ̄/β implies that it is positive and takes on

a unique local maximum in the interval.
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Proof of Proposition 6

Expected borrower utility with lending type t is

Ut(r) = Πt(r)E(θ − r|θt ∈ St) + [1−Πt(r)]E
(

θ − θ

β

∣∣∣∣ θt ∈ Dt

)
= E(θ)−Πt(r)r −

1
β

[1−Πt(r)]E(θ|θt ∈ Dt).

Define the last term on the right-hand side as the deadweight loss with lending type t:

Lt(r) ≡
1
β

[1−Πt(r)]E(θ|θt ∈ Dt), t ∈ {I, G}.

Then

Ut(r) = E(θ)−Πt(r)r − Lt(r).

For GL, the conditional expectation of θ given default is

E(θ|θG ∈ DG) =
1

1−ΠG(r)

∫ βr

θ

1
θ̄ − θ

∫ βr

θ

θ

θ̄ − θ
dθ dθ′

=
1

1−ΠG(r)

∫ βr
θ dθ′

∫ βr
θ θdθ

(θ̄ − θ)2

=
1

1−ΠG(r)
(βr − θ)(β2r2 − θ2)

2(θ̄ − θ)2

=
1

1−ΠG(r)
β3r3 − β2θr2 − βθ2r + θ3

2(θ̄ − θ)2
.

(It is easy to check that this conditional expectation can be written as (βr + θ)/2.)

Let maxr RG(r) ≥ ρ, so that rG is well defined. By definition, ΠG(rG)rG = ρ. Suppose there is

a different interest rate r (> rG) which borrowers prefer and which yields positive profits for

banks: ΠG(r)r > ρ. From

Ut(r) = E(θ)−Πt(r)r − Lt(r),
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this implies

Lt(r) < Lt(rG)

for t = G. Since r > rG, we have a contradiction if

L′
G(r) > 0

d

dr

{
1
β

[1−ΠG(r)]E(θ|θG ∈ DG)
}

> 0

d

dr

[
β3r3 − β2θr2 − βθ2r + θ3

2(θ̄ − θ)2

]
> 0

d

dr
[β3r3 − β2θr2 − βθ2r + θ3] > 0

3β3r2 − 2β2θr − βθ2 > 0

r2 − 2
3

θ

β
r − 1

3

(
θ

β

)2

> 0.

The roots of the quadratic equation on the left-hand side are

r1/2 =
1
3

θ

β
±

[
1
9

(
θ

β

)2

+
1
3

(
θ

β

)2
] 1

2

=
1
3

θ

β
± 2

3
θ

β

=
{
−1

3
θ

β
,

θ

β

}
.

Evidently, we have

r2 − 2
3

θ

β
r − 1

3

(
θ

β

)2

> 0, r >
θ

β
.

This proves that there is no profitable GL contract.

�
r

�

� �

− θ
3β

θ
β

LG(r)

As to IL contracts, note that

E(θ|θI ∈ DI) =
1

1−ΠI(r)

∫ βr

θ

θ

θ̄ − θ
dθ

=
1

1−ΠI(r)
β2r2 − θ2

2(θ̄ − θ)

E(θ|θI ∈ DI)[1−ΠI(r)] =
β2r2 − θ2

2(θ̄ − θ)

LI(r) =
1
β

β2r2 − θ2

2(θ̄ − θ)
.
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L′
I(r) > 0 for all r > 0. A comparison with

LG(r) =
1
β

(βr − θ)(β2r2 − θ2)
2(θ̄ − θ)2

shows that for all r,

LG(r) < LI(r).

Suppose rI exists. The fact that RG(r) > RI(r) for all r implies rI > rG. From L′
G(r) > 0 and

LG(r) < LI(r), it follows that

LG(rG) < LG(rI) < LI(rI).

Using RG(rG) = RI(rI) = ρ, we have

LG(rG) < LI(rI)

−LG(rG) > −LI(rI)

−ρ− LG(rG) > −ρ− LI(rI)

−RG(rG)− LG(rG) > −RI(rI)− LI(rI)

E(θ)−RG(rG)− LG(rG) > E(θ)−RI(rI)− LI(rI)

UG(rG) > UI(rI).

That is, borrowers prefer GL at rG to IL at rI . As rI is the lowest IL loan rate that breaks even

and L′
I(r) > 0, it follows that

UG(rG) > UI(r) = E(θ)−RI(r)− LI(r)

for all r whenever RI(r) > ρ. So it is not possible to enter the market with IL at a loan rate

above rI either.
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